Unified multimodal fusion transformer for few shot object detection for remote sensing images

计算机科学 计算机视觉 融合 人工智能 变压器 单发 弹丸 目标检测 对象(语法) 遥感 模式识别(心理学) 电气工程 地质学 物理 工程类 哲学 语言学 化学 光学 有机化学 电压
作者
Abdullah Azeem,Zhengzhou Li,Abubakar Siddique,Yuting Zhang,Shangbo Zhou
出处
期刊:Information Fusion [Elsevier BV]
卷期号:111: 102508-102508 被引量:10
标识
DOI:10.1016/j.inffus.2024.102508
摘要

Object detection is a fundamental computer vision task with wide applications in remote sensing, but traditional methods strongly rely on large annotated datasets which are difficult to obtain, especially for novel object classes. Few-shot object detection (FSOD) aims to address this by using detectors to learn from very limited labeled data. Recent work fuse multi-modalities like image–text pairs to tackle data scarcity but require external region proposal network (RPN) to align cross-modal pairs which leads to a bias towards base classes and insufficient cross-modal contextual learning. To address these problems, we propose a unified multi-modal fusion transformer (UMFT), which extracts visual features from ViT and textual encodings from BERT to align multi-modal representations in an end-to-end manner. Specifically, affinity-guided fusion (AFM) captures semantically related image–text pairs by modeling their affinity relationships to selectively combine most informative pairs. In addition, cross-modal correlation module (CCM) captures discriminative inter-modal patterns between image and text representations and filters out unrelated features to enhance cross-modal alignment. By leveraging AFM to focus on semantic relationships and CCM to refine inter-modal features, the model better aligns multimodal data without RPN. These representations are passed to detection decoder that predicts bounding boxes, probabilities of class and cross-modal attributes. Evaluation of UMFT on benchmark datasets NWPU VHR-10 and DIOR demonstrated its ability to leverage limited image–text training data via dynamic fusion, achieving new state-of-the-art mean average precision (mAP) for few-shot object detection. Our code will be publicly available at https://github.com/abdullah-azeem/umft.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
肝不动的牛马完成签到,获得积分10
1秒前
Ilan发布了新的文献求助10
2秒前
花酒发布了新的文献求助10
2秒前
3秒前
小马甲应助xin采纳,获得10
4秒前
4秒前
4秒前
高贵的馒头完成签到,获得积分10
5秒前
不舍天真完成签到,获得积分10
5秒前
wentong完成签到,获得积分10
5秒前
星河清梦发布了新的文献求助30
8秒前
情怀应助zy采纳,获得10
8秒前
9秒前
9秒前
9秒前
10秒前
changping应助花酒采纳,获得10
10秒前
zhangxq关注了科研通微信公众号
11秒前
ding应助花样年华采纳,获得10
11秒前
11秒前
11秒前
tsuki完成签到 ,获得积分10
11秒前
xin完成签到,获得积分10
12秒前
gattina发布了新的文献求助10
12秒前
kiven完成签到 ,获得积分10
12秒前
Emper发布了新的文献求助10
15秒前
17秒前
江屿完成签到,获得积分20
17秒前
17秒前
18秒前
19秒前
丘比特应助科研通管家采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
搜集达人应助科研通管家采纳,获得10
20秒前
天天快乐应助科研通管家采纳,获得10
21秒前
啾啾应助科研通管家采纳,获得20
21秒前
上官若男应助科研通管家采纳,获得10
21秒前
完美世界应助Liu +采纳,获得10
21秒前
小马甲应助科研通管家采纳,获得10
21秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5218912
求助须知:如何正确求助?哪些是违规求助? 4392767
关于积分的说明 13677175
捐赠科研通 4255477
什么是DOI,文献DOI怎么找? 2334980
邀请新用户注册赠送积分活动 1332572
关于科研通互助平台的介绍 1286834