Unified multimodal fusion transformer for few shot object detection for remote sensing images

计算机科学 计算机视觉 融合 人工智能 变压器 单发 弹丸 目标检测 对象(语法) 遥感 模式识别(心理学) 电气工程 地质学 物理 工程类 哲学 语言学 化学 光学 有机化学 电压
作者
Abdullah Azeem,Zhengzhou Li,Abubakar Siddique,Yuting Zhang,Shangbo Zhou
出处
期刊:Information Fusion [Elsevier]
卷期号:111: 102508-102508
标识
DOI:10.1016/j.inffus.2024.102508
摘要

Object detection is a fundamental computer vision task with wide applications in remote sensing, but traditional methods strongly rely on large annotated datasets which are difficult to obtain, especially for novel object classes. Few-shot object detection (FSOD) aims to address this by using detectors to learn from very limited labeled data. Recent work fuse multi-modalities like image–text pairs to tackle data scarcity but require external region proposal network (RPN) to align cross-modal pairs which leads to a bias towards base classes and insufficient cross-modal contextual learning. To address these problems, we propose a unified multi-modal fusion transformer (UMFT), which extracts visual features from ViT and textual encodings from BERT to align multi-modal representations in an end-to-end manner. Specifically, affinity-guided fusion (AFM) captures semantically related image–text pairs by modeling their affinity relationships to selectively combine most informative pairs. In addition, cross-modal correlation module (CCM) captures discriminative inter-modal patterns between image and text representations and filters out unrelated features to enhance cross-modal alignment. By leveraging AFM to focus on semantic relationships and CCM to refine inter-modal features, the model better aligns multimodal data without RPN. These representations are passed to detection decoder that predicts bounding boxes, probabilities of class and cross-modal attributes. Evaluation of UMFT on benchmark datasets NWPU VHR-10 and DIOR demonstrated its ability to leverage limited image–text training data via dynamic fusion, achieving new state-of-the-art mean average precision (mAP) for few-shot object detection. Our code will be publicly available at https://github.com/abdullah-azeem/umft.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助苦哈哈采纳,获得10
刚刚
张无缺完成签到,获得积分10
刚刚
刚刚
Ansong完成签到,获得积分10
刚刚
1秒前
刘金金发布了新的文献求助10
1秒前
暴躁de晶完成签到,获得积分10
1秒前
小二郎应助skittles采纳,获得10
3秒前
女青完成签到,获得积分10
3秒前
上官若男应助鹿lu采纳,获得10
3秒前
4秒前
哈哈完成签到,获得积分10
4秒前
小丶小丶发布了新的文献求助10
4秒前
lengyu完成签到,获得积分10
6秒前
打打应助Cris采纳,获得10
6秒前
6秒前
科研通AI2S应助yuan1226采纳,获得10
7秒前
wyblobin发布了新的文献求助10
7秒前
怡然的绮彤完成签到 ,获得积分10
7秒前
healthy完成签到 ,获得积分10
7秒前
乐乐应助jj采纳,获得10
8秒前
小九完成签到 ,获得积分10
10秒前
万能图书馆应助满意非笑采纳,获得10
11秒前
seven完成签到 ,获得积分10
11秒前
11秒前
CipherSage应助科研通管家采纳,获得10
11秒前
JamesPei应助科研通管家采纳,获得10
11秒前
琦诺应助科研通管家采纳,获得10
11秒前
wanci应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
科目三应助科研通管家采纳,获得10
11秒前
11秒前
12秒前
小九关注了科研通微信公众号
13秒前
喜欢玩辅助完成签到,获得积分10
13秒前
兴奋中道发布了新的文献求助10
14秒前
乐观大白菜真实的钥匙完成签到,获得积分10
14秒前
默默小土豆完成签到,获得积分10
15秒前
Lucas应助Nan采纳,获得10
16秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3222200
求助须知:如何正确求助?哪些是违规求助? 2870768
关于积分的说明 8172106
捐赠科研通 2537838
什么是DOI,文献DOI怎么找? 1369757
科研通“疑难数据库(出版商)”最低求助积分说明 645582
邀请新用户注册赠送积分活动 619333