Unified multimodal fusion transformer for few shot object detection for remote sensing images

计算机科学 计算机视觉 融合 人工智能 变压器 单发 弹丸 目标检测 对象(语法) 遥感 模式识别(心理学) 电气工程 地质学 物理 工程类 哲学 语言学 化学 光学 有机化学 电压
作者
Abdullah Azeem,Zhengzhou Li,Abubakar Siddique,Yuting Zhang,Shangbo Zhou
出处
期刊:Information Fusion [Elsevier]
卷期号:111: 102508-102508 被引量:1
标识
DOI:10.1016/j.inffus.2024.102508
摘要

Object detection is a fundamental computer vision task with wide applications in remote sensing, but traditional methods strongly rely on large annotated datasets which are difficult to obtain, especially for novel object classes. Few-shot object detection (FSOD) aims to address this by using detectors to learn from very limited labeled data. Recent work fuse multi-modalities like image–text pairs to tackle data scarcity but require external region proposal network (RPN) to align cross-modal pairs which leads to a bias towards base classes and insufficient cross-modal contextual learning. To address these problems, we propose a unified multi-modal fusion transformer (UMFT), which extracts visual features from ViT and textual encodings from BERT to align multi-modal representations in an end-to-end manner. Specifically, affinity-guided fusion (AFM) captures semantically related image–text pairs by modeling their affinity relationships to selectively combine most informative pairs. In addition, cross-modal correlation module (CCM) captures discriminative inter-modal patterns between image and text representations and filters out unrelated features to enhance cross-modal alignment. By leveraging AFM to focus on semantic relationships and CCM to refine inter-modal features, the model better aligns multimodal data without RPN. These representations are passed to detection decoder that predicts bounding boxes, probabilities of class and cross-modal attributes. Evaluation of UMFT on benchmark datasets NWPU VHR-10 and DIOR demonstrated its ability to leverage limited image–text training data via dynamic fusion, achieving new state-of-the-art mean average precision (mAP) for few-shot object detection. Our code will be publicly available at https://github.com/abdullah-azeem/umft.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
波特卡斯D艾斯完成签到 ,获得积分10
1秒前
852应助排骨炖豆角采纳,获得10
2秒前
2秒前
顾矜应助木子采纳,获得10
2秒前
feng发布了新的文献求助10
2秒前
成就的小熊猫完成签到,获得积分10
3秒前
3秒前
Morgenstern_ZH完成签到,获得积分10
4秒前
hua发布了新的文献求助10
4秒前
_Forelsket_完成签到,获得积分10
4秒前
4秒前
半颗橙子完成签到 ,获得积分10
6秒前
科研通AI5应助zmy采纳,获得10
6秒前
善学以致用应助enoot采纳,获得10
7秒前
JamesPei应助失眠的血茗采纳,获得10
7秒前
青山发布了新的文献求助10
7秒前
亻鱼发布了新的文献求助10
8秒前
脑洞疼应助成就的小熊猫采纳,获得10
8秒前
8秒前
waterclouds完成签到 ,获得积分10
8秒前
圆圈儿完成签到,获得积分10
8秒前
司空剑封完成签到,获得积分10
9秒前
9秒前
海棠yiyi完成签到,获得积分10
9秒前
9秒前
梁小鑫发布了新的文献求助10
9秒前
Jenny应助圈圈采纳,获得10
10秒前
内向青文完成签到,获得积分10
10秒前
lefora完成签到,获得积分10
10秒前
丰知然应助CO2采纳,获得10
11秒前
Zhihu完成签到,获得积分10
11秒前
feng完成签到,获得积分10
12秒前
12秒前
美丽稀完成签到,获得积分10
13秒前
PXY应助屁王采纳,获得10
13秒前
sunburst完成签到,获得积分10
13秒前
狼主完成签到 ,获得积分10
13秒前
吕亦寒完成签到,获得积分10
13秒前
junzilan发布了新的文献求助10
14秒前
ZL发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740