SCAE: Structural Contrastive Auto-encoder for Incomplete Multi-view Representation Learning

计算机科学 特征学习 人工智能 代表(政治) 机器学习 政治 政治学 法学
作者
Mengran Li,Ronghui Zhang,Yong Zhang,Xinglin Piao,Shiyu Zhao,Baocai Yin
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
标识
DOI:10.1145/3672078
摘要

Describing an object from multiple perspectives often leads to incomplete data representation. Consequently, learning consistent representations for missing data from multiple views has emerged as a key focus in the realm of Incomplete Multi-view Representation Learning (IMRL). In recent years, various strategies such as subspace learning, matrix decomposition, and deep learning have been harnessed to develop numerous IMRL methods. In this paper, our primary research revolves around IMRL, with a particular emphasis on addressing two main challenges. Firstly, we delve into the effective integration of intra-view similarity and contextual structure into a unified framework. Secondly, we explore the effective facilitation of information exchange and fusion across multiple views. To tackle these issues, we propose a deep learning approach known as Structural Contrastive Auto-encoder (SCAE) to solve the challenges of IMRL. SCAE comprises two major components: Intra-View Structural Representation Learning and Inter-View Contrastive Representation Learning. The former involves capturing intra-view similarity by minimizing the Dirichlet energy of the feature matrix, while also applying spatial dispersion regularization to capture intra-view contextual structure. The latter encourages maximizing the mutual information of inter-view representations, facilitating information exchange and fusion across views. Experimental results demonstrate the efficacy of our approach in significantly enhancing model accuracy and robustly addressing IMRL problems. The code is available at https://github.com/limengran98/SCAE .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
帅哥只找疑难文献完成签到,获得积分10
3秒前
星辰大海应助清秀凌蝶采纳,获得10
4秒前
勤劳的雁凡完成签到,获得积分10
5秒前
6秒前
Danny完成签到,获得积分10
7秒前
眼睛大书兰完成签到,获得积分10
9秒前
buno应助hhhh采纳,获得10
12秒前
小曾发布了新的文献求助10
12秒前
12秒前
buzaiyi完成签到,获得积分10
13秒前
13秒前
13秒前
单薄的如之完成签到,获得积分10
13秒前
怕黑谷波发布了新的文献求助20
14秒前
15秒前
木子发布了新的文献求助10
16秒前
不吃香菜完成签到 ,获得积分10
16秒前
欧阳枫完成签到 ,获得积分10
16秒前
17秒前
19秒前
shimmer.发布了新的文献求助10
20秒前
22秒前
清秀凌蝶发布了新的文献求助10
22秒前
27秒前
钟晓泽完成签到 ,获得积分10
30秒前
32秒前
小曾完成签到,获得积分10
34秒前
刘洋发布了新的文献求助10
36秒前
郑堰爻完成签到 ,获得积分10
36秒前
小油菜完成签到 ,获得积分10
37秒前
38秒前
小马甲应助遮宁采纳,获得10
38秒前
Hello应助香辣鸡腿堡采纳,获得10
39秒前
圆圆完成签到 ,获得积分10
39秒前
Aroma发布了新的文献求助20
39秒前
李响完成签到,获得积分10
41秒前
永远学不秃的殷敢敢完成签到,获得积分10
41秒前
42秒前
qin希望应助Danny采纳,获得10
43秒前
44秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3264540
求助须知:如何正确求助?哪些是违规求助? 2904557
关于积分的说明 8330804
捐赠科研通 2574819
什么是DOI,文献DOI怎么找? 1399503
科研通“疑难数据库(出版商)”最低求助积分说明 654506
邀请新用户注册赠送积分活动 633201