SCAE: Structural Contrastive Auto-encoder for Incomplete Multi-view Representation Learning

计算机科学 特征学习 人工智能 代表(政治) 机器学习 政治 政治学 法学
作者
Mengran Li,Ronghui Zhang,Yong Zhang,Xinglin Piao,Shiyu Zhao,Baocai Yin
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
被引量:1
标识
DOI:10.1145/3672078
摘要

Describing an object from multiple perspectives often leads to incomplete data representation. Consequently, learning consistent representations for missing data from multiple views has emerged as a key focus in the realm of Incomplete Multi-view Representation Learning (IMRL). In recent years, various strategies such as subspace learning, matrix decomposition, and deep learning have been harnessed to develop numerous IMRL methods. In this paper, our primary research revolves around IMRL, with a particular emphasis on addressing two main challenges. Firstly, we delve into the effective integration of intra-view similarity and contextual structure into a unified framework. Secondly, we explore the effective facilitation of information exchange and fusion across multiple views. To tackle these issues, we propose a deep learning approach known as Structural Contrastive Auto-encoder (SCAE) to solve the challenges of IMRL. SCAE comprises two major components: Intra-View Structural Representation Learning and Inter-View Contrastive Representation Learning. The former involves capturing intra-view similarity by minimizing the Dirichlet energy of the feature matrix, while also applying spatial dispersion regularization to capture intra-view contextual structure. The latter encourages maximizing the mutual information of inter-view representations, facilitating information exchange and fusion across views. Experimental results demonstrate the efficacy of our approach in significantly enhancing model accuracy and robustly addressing IMRL problems. The code is available at https://github.com/limengran98/SCAE .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
发光的小Q完成签到,获得积分20
3秒前
Svetlana完成签到,获得积分20
5秒前
5秒前
情怀应助daydayup采纳,获得10
6秒前
7秒前
发光的小Q发布了新的文献求助10
8秒前
9秒前
开心初雪完成签到,获得积分10
10秒前
标致小翠完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
烟花应助wengjiaqi采纳,获得10
14秒前
CSII发布了新的文献求助10
15秒前
晴语发布了新的文献求助10
15秒前
科研通AI5应助王肄博采纳,获得10
15秒前
田様应助冷静的方盒采纳,获得10
16秒前
刘泽发布了新的文献求助10
17秒前
666发布了新的文献求助10
17秒前
19秒前
汉堡包应助ff采纳,获得10
20秒前
小蘑菇应助奔波儿灞采纳,获得10
21秒前
柒柒完成签到,获得积分10
23秒前
阿波呲的额佛歌完成签到,获得积分10
23秒前
24秒前
现代宛丝发布了新的文献求助10
24秒前
28秒前
32秒前
33秒前
现代宛丝完成签到,获得积分10
34秒前
唯梦发布了新的文献求助10
34秒前
Hello应助吃颗糖吧采纳,获得10
34秒前
达蒙璃完成签到 ,获得积分0
37秒前
37秒前
动听锦程发布了新的文献求助10
37秒前
38秒前
39秒前
39秒前
iNk应助懒洋洋采纳,获得20
40秒前
略略完成签到,获得积分20
41秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3756737
求助须知:如何正确求助?哪些是违规求助? 3300112
关于积分的说明 10112396
捐赠科研通 3014584
什么是DOI,文献DOI怎么找? 1655610
邀请新用户注册赠送积分活动 790023
科研通“疑难数据库(出版商)”最低求助积分说明 753549