A Low Order Mass Flow-Heat Transfer-Stress Model as a Design Code for Transpiration Cooled Nickel Gas Turbine Blades and a Guide for Crystal Plasticity-Based Fatigue-Creep Life Assessment

材料科学 燃气轮机 蠕动 涡轮叶片 晶体塑性 可塑性 传质 传热 流量(数学) 冶金 机械工程 机械 涡轮机 核工程 复合材料 工程类 物理
作者
Christos Skamniotis,Michael van de Noort,A.C.F. Cocks,Peter Ireland
标识
DOI:10.2139/ssrn.4822605
摘要

Transpiration Cooling (TC) systems offer the opportunity to significantly improve the fuel efficiency of jet engines by allowing them to run much hotter than current designs allow. The enhanced heat transfer provided by TC systems requires the adoption of new radical design concepts, but large cyclic thermomechanical stresses and creep-plastic deformation generated during operation can severely limit the life of a component. TC systems can only be realised in real engines if an integrated design approach is adopted, which simultaneously considers the aerothermal and mechanical performance. We develop here a multidisciplinary low order aerothermal-stress model (LOM) which addresses this need by combining first order coolant mass flow and fluid-solid convective-conductive heat transfer calculations with thermomechanical stress calculations in the solid. The LOM provides rapid answers to crucial questions posed during conceptual and preliminary design stages, such as: how much cooling air and how many cooling holes are required in gas turbine blades for them to operate safely at a given turbine inlet (hot gas) temperature? Simultaneously, the LOM narrows the range of conditions under which Crystal Plasticity Finite Element (CPFE) simulations may be required for fatigue-creep life assessment at the detailed design stage. Our answer to previous pessimistic views on the practical use of TC is that TC systems can actually work thanks to the threefold benefit of cooling holes in reducing metal temperatures, temperature gradients and effective thermal stresses. CPFE simulations confirm this new conclusion, encouraging the wider use of our methods in the design of turbomachines and hypersonic technologies as well as the take-up of TC systems to deliver fuel efficient and durable turbines for net zero.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
每天科研十二小时完成签到,获得积分10
2秒前
2秒前
一只呆猫er完成签到,获得积分10
3秒前
3秒前
卷卷发布了新的文献求助10
3秒前
懒洋洋完成签到 ,获得积分10
4秒前
4秒前
健忘洋葱完成签到 ,获得积分10
4秒前
张嘉琪发布了新的文献求助10
5秒前
FloraWang完成签到 ,获得积分10
5秒前
wangaiting完成签到,获得积分10
6秒前
安静的嘚嘚完成签到 ,获得积分10
6秒前
在水一方应助小蜗采纳,获得10
7秒前
yaorongxia发布了新的文献求助10
9秒前
Channing发布了新的文献求助10
10秒前
11秒前
13秒前
13秒前
现代的bb完成签到,获得积分10
13秒前
怕孤独的凌柏完成签到,获得积分10
14秒前
14秒前
14秒前
16秒前
风清扬发布了新的文献求助10
16秒前
可爱的函函应助缓慢天菱采纳,获得10
17秒前
欢呼无春发布了新的文献求助10
19秒前
MOD发布了新的文献求助10
19秒前
花花完成签到,获得积分10
20秒前
桐桐应助怕孤独的凌柏采纳,获得10
20秒前
Francis发布了新的文献求助10
22秒前
鱼鱼123发布了新的文献求助10
22秒前
白华苍松发布了新的文献求助20
23秒前
ho发布了新的文献求助30
24秒前
科研通AI6应助MOD采纳,获得30
24秒前
鲤小鱼完成签到,获得积分10
24秒前
24秒前
25秒前
垃圾智造者完成签到,获得积分10
25秒前
wanci应助凉夏采纳,获得30
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5397108
求助须知:如何正确求助?哪些是违规求助? 4517388
关于积分的说明 14063591
捐赠科研通 4429251
什么是DOI,文献DOI怎么找? 2432251
邀请新用户注册赠送积分活动 1424786
关于科研通互助平台的介绍 1403842