A Low Order Mass Flow-Heat Transfer-Stress Model as a Design Code for Transpiration Cooled Nickel Gas Turbine Blades and a Guide for Crystal Plasticity-Based Fatigue-Creep Life Assessment

材料科学 燃气轮机 蠕动 涡轮叶片 晶体塑性 可塑性 传质 传热 流量(数学) 冶金 机械工程 机械 涡轮机 核工程 复合材料 工程类 物理
作者
Christos Skamniotis,Michael van de Noort,A.C.F. Cocks,Peter Ireland
标识
DOI:10.2139/ssrn.4822605
摘要

Transpiration Cooling (TC) systems offer the opportunity to significantly improve the fuel efficiency of jet engines by allowing them to run much hotter than current designs allow. The enhanced heat transfer provided by TC systems requires the adoption of new radical design concepts, but large cyclic thermomechanical stresses and creep-plastic deformation generated during operation can severely limit the life of a component. TC systems can only be realised in real engines if an integrated design approach is adopted, which simultaneously considers the aerothermal and mechanical performance. We develop here a multidisciplinary low order aerothermal-stress model (LOM) which addresses this need by combining first order coolant mass flow and fluid-solid convective-conductive heat transfer calculations with thermomechanical stress calculations in the solid. The LOM provides rapid answers to crucial questions posed during conceptual and preliminary design stages, such as: how much cooling air and how many cooling holes are required in gas turbine blades for them to operate safely at a given turbine inlet (hot gas) temperature? Simultaneously, the LOM narrows the range of conditions under which Crystal Plasticity Finite Element (CPFE) simulations may be required for fatigue-creep life assessment at the detailed design stage. Our answer to previous pessimistic views on the practical use of TC is that TC systems can actually work thanks to the threefold benefit of cooling holes in reducing metal temperatures, temperature gradients and effective thermal stresses. CPFE simulations confirm this new conclusion, encouraging the wider use of our methods in the design of turbomachines and hypersonic technologies as well as the take-up of TC systems to deliver fuel efficient and durable turbines for net zero.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丝丝完成签到,获得积分20
刚刚
顾矜应助吹风的田采纳,获得10
刚刚
有野发布了新的文献求助10
刚刚
CipherSage应助roselin26采纳,获得20
刚刚
Hello应助lixl0725采纳,获得10
1秒前
CipherSage应助暴躁的电脑采纳,获得10
2秒前
楠楠小猪完成签到,获得积分10
2秒前
Lucky完成签到 ,获得积分10
2秒前
SciGPT应助marshyyy采纳,获得10
2秒前
2秒前
changge发布了新的文献求助10
3秒前
3秒前
波粒二象主义完成签到,获得积分10
3秒前
酷波er应助zzk采纳,获得10
3秒前
搜集达人应助微笑枫采纳,获得10
3秒前
险胜应助瑾宜采纳,获得10
4秒前
4秒前
丝丝发布了新的文献求助10
4秒前
ff完成签到 ,获得积分10
4秒前
disciple发布了新的文献求助10
4秒前
Hzz完成签到,获得积分10
5秒前
潇洒如凡完成签到,获得积分10
6秒前
6秒前
在水一方应助ADDDD采纳,获得10
6秒前
隐形曼青应助淡淡的飞雪采纳,获得10
6秒前
6秒前
Marvel发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
7秒前
科研糊涂神完成签到,获得积分10
8秒前
narssu发布了新的文献求助10
8秒前
bkagyin应助复杂的一一采纳,获得10
8秒前
JeremyChi完成签到,获得积分10
9秒前
研友_VZG7GZ应助美好斓采纳,获得10
9秒前
Jessica发布了新的文献求助20
9秒前
zzk发布了新的文献求助10
10秒前
10秒前
10秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305763
求助须知:如何正确求助?哪些是违规求助? 2939395
关于积分的说明 8493534
捐赠科研通 2613845
什么是DOI,文献DOI怎么找? 1427668
科研通“疑难数据库(出版商)”最低求助积分说明 663156
邀请新用户注册赠送积分活动 647945