亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Grain boundary microstructure engineering of Li1.3Al0.3Ti1.7(PO4)3 electrolytes with a low-temperature-prepared nanopowder and Bi2O3 additive

材料科学 电解质 烧结 微观结构 晶界 锂(药物) 离子电导率 相对密度 化学工程 电导率 晶粒生长 电池(电) 离子键合 纳米技术 冶金 电极 离子 热力学 功率(物理) 物理化学 化学 工程类 医学 物理 量子力学 内分泌学
作者
Yue Jiang,Zhiwei Hu,Qiaohong Yan,Xiaohong Zhu
出处
期刊:Ceramics International [Elsevier]
卷期号:50 (16): 28428-28437
标识
DOI:10.1016/j.ceramint.2024.05.149
摘要

All-solid-state lithium batteries have great potential applying to the fields of transportation and portable devices because of their high safety and energy density as the power source. As a critical component of device, solid-state electrolyte has been paid much attention. Given the excellent physical and chemical stability, Li1+xAlxTi2-x(PO4)3 (LATP)-based electrolyte has been considered as one of the most promising electrolytes for the next generation batteries. However, a further promotion of its ionic conductivity becomes extremely difficult, originating mainly from the poor connection of grains and a low relative density of LATP. Here, the nanosized and homogenous LATP (x=0.3) powders were synthesized through reducing the agglomeration of precursor powders and preparing at low temperatures. It is revealed that uniformly superfine LATP powders are able to improve the microstructure of grain boundaries during the pellet sintering process, thereby reducing the grain boundary resistance. Furthermore, as-synthesized nanosized powders mixed with Bi2O3 additive present a better enhancement on the connection of grains and the relative density in LATP. On the basis of this understanding, we prepared LATP electrolytes with 0.5 wt% Bi2O3 exhibiting a high ionic conductivity of 8.56×10-4 S/cm, a high relative density of 94.4% and a low activation energy of 0.27 eV, which is demonstrated as a prospective electrolyte in all-solid-state lithium battery LiFePO4/PEO/LATP/PEO/Li.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shinn发布了新的文献求助10
1秒前
思柔完成签到,获得积分10
3秒前
5秒前
shinn发布了新的文献求助10
5秒前
坚守完成签到 ,获得积分10
11秒前
yjr发布了新的文献求助10
11秒前
12秒前
搞怪的白云完成签到 ,获得积分10
13秒前
江江江完成签到,获得积分20
14秒前
17秒前
21秒前
瑕不掩瑜发布了新的文献求助10
21秒前
英姑应助吉吉采纳,获得10
23秒前
25秒前
莫愁完成签到 ,获得积分10
27秒前
充电宝应助shinn采纳,获得10
29秒前
30秒前
34秒前
35秒前
Owen应助发发采纳,获得30
35秒前
43秒前
瑕不掩瑜完成签到,获得积分10
45秒前
石榴汁的书完成签到,获得积分10
54秒前
55秒前
qzp完成签到 ,获得积分10
56秒前
56秒前
56秒前
寻道图强举报spring求助涉嫌违规
57秒前
shinn发布了新的文献求助10
59秒前
1分钟前
带刺的玫瑰李博应助CGDGD采纳,获得10
1分钟前
顾矜应助宇宙超人007008采纳,获得10
1分钟前
科研通AI2S应助shinn采纳,获得10
1分钟前
1分钟前
安静严青完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
吉吉发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772284
求助须知:如何正确求助?哪些是违规求助? 5597270
关于积分的说明 15429424
捐赠科研通 4905304
什么是DOI,文献DOI怎么找? 2639326
邀请新用户注册赠送积分活动 1587253
关于科研通互助平台的介绍 1542112