Grain boundary microstructure engineering of Li1.3Al0.3Ti1.7(PO4)3 electrolytes with a low-temperature-prepared nanopowder and Bi2O3 additive

材料科学 电解质 烧结 微观结构 晶界 锂(药物) 离子电导率 相对密度 化学工程 电导率 晶粒生长 电池(电) 离子键合 纳米技术 冶金 电极 离子 热力学 功率(物理) 物理化学 物理 工程类 内分泌学 化学 医学 量子力学
作者
Yue Jiang,Zhiwei Hu,Qiaohong Yan,Xiaohong Zhu
出处
期刊:Ceramics International [Elsevier]
卷期号:50 (16): 28428-28437
标识
DOI:10.1016/j.ceramint.2024.05.149
摘要

All-solid-state lithium batteries have great potential applying to the fields of transportation and portable devices because of their high safety and energy density as the power source. As a critical component of device, solid-state electrolyte has been paid much attention. Given the excellent physical and chemical stability, Li1+xAlxTi2-x(PO4)3 (LATP)-based electrolyte has been considered as one of the most promising electrolytes for the next generation batteries. However, a further promotion of its ionic conductivity becomes extremely difficult, originating mainly from the poor connection of grains and a low relative density of LATP. Here, the nanosized and homogenous LATP (x=0.3) powders were synthesized through reducing the agglomeration of precursor powders and preparing at low temperatures. It is revealed that uniformly superfine LATP powders are able to improve the microstructure of grain boundaries during the pellet sintering process, thereby reducing the grain boundary resistance. Furthermore, as-synthesized nanosized powders mixed with Bi2O3 additive present a better enhancement on the connection of grains and the relative density in LATP. On the basis of this understanding, we prepared LATP electrolytes with 0.5 wt% Bi2O3 exhibiting a high ionic conductivity of 8.56×10-4 S/cm, a high relative density of 94.4% and a low activation energy of 0.27 eV, which is demonstrated as a prospective electrolyte in all-solid-state lithium battery LiFePO4/PEO/LATP/PEO/Li.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘松发布了新的文献求助10
1秒前
会幸福的发布了新的文献求助10
1秒前
古夕完成签到,获得积分10
1秒前
2秒前
啦啦啦发布了新的文献求助10
3秒前
ange发布了新的文献求助10
3秒前
xiaoting完成签到,获得积分20
4秒前
Tong发布了新的文献求助10
5秒前
5秒前
123完成签到 ,获得积分10
5秒前
6秒前
7秒前
8秒前
9秒前
HaHa007发布了新的文献求助30
10秒前
10秒前
betyby发布了新的文献求助10
10秒前
Conley完成签到,获得积分20
10秒前
11秒前
11秒前
脑洞疼应助留胡子的妖妖采纳,获得10
12秒前
12秒前
啦啦啦完成签到,获得积分10
13秒前
羊羊羊完成签到,获得积分10
13秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
852应助刘松采纳,获得10
15秒前
嘻嘻发布了新的文献求助10
16秒前
浮游应助辛艺采纳,获得10
18秒前
羊羊羊发布了新的文献求助10
18秒前
归尘发布了新的文献求助10
18秒前
浮游应助Tong采纳,获得10
18秒前
浮游应助Tong采纳,获得10
18秒前
廿一雨发布了新的文献求助10
18秒前
21秒前
BoBO完成签到,获得积分10
23秒前
24秒前
26秒前
合欢完成签到,获得积分10
26秒前
26秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5457501
求助须知:如何正确求助?哪些是违规求助? 4563864
关于积分的说明 14291930
捐赠科研通 4488544
什么是DOI,文献DOI怎么找? 2458577
邀请新用户注册赠送积分活动 1448595
关于科研通互助平台的介绍 1424244