奥西默替尼
T790米
癌症研究
表皮生长因子受体
蛋白激酶B
肺癌
激酶
化学
癌症
医学
磷酸化
埃罗替尼
吉非替尼
生物化学
肿瘤科
内科学
作者
Mi-Ju Park,Shibo Wei,Chu‐Long Xie,Jung Ho Han,Bo-Sung Kim,Bo-Sung Kim,Jung-Sook Jin,Eun-Sun Yang,Min Kyoung Cho,Dongryeol Ryu,Haoxian Yang,Sung‐Jin Bae,Ki‐Tae Ha
标识
DOI:10.1038/s12276-024-01221-2
摘要
Abstract Osimertinib, a selective third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), effectively targets the EGFR T790M mutant in non-small cell lung cancer (NSCLC). However, the newly identified EGFR C797S mutation confers resistance to osimertinib. In this study, we explored the role of pyruvate dehydrogenase kinase 1 (PDK1) in osimertinib resistance. Patients exhibiting osimertinib resistance initially displayed elevated PDK1 expression. Osimertinib-resistant cell lines with the EGFR C797S mutation were established using A549, NCI-H292, PC-9, and NCI-H1975 NSCLC cells for both in vitro and in vivo investigations. These EGFR C797S mutant cells exhibited heightened phosphorylation of EGFR, leading to the activation of downstream oncogenic pathways. The EGFR C797S mutation appeared to increase PDK1-driven glycolysis through the EGFR/AKT/HIF-1α axis. Combining osimertinib with the PDK1 inhibitor leelamine helped successfully overcome osimertinib resistance in allograft models. CRISPR-mediated PDK1 knockout effectively inhibited tumor formation in xenograft models. Our study established a clear link between the EGFR C797S mutation and elevated PDK1 expression, opening new avenues for the discovery of targeted therapies and improving our understanding of the roles of EGFR mutations in cancer progression.
科研通智能强力驱动
Strongly Powered by AbleSci AI