内型
试验装置
人工智能
医学
接收机工作特性
计算机科学
慢性鼻-鼻窦炎
曲线下面积
鼻息肉
模式识别(心理学)
残余物
放射科
机器学习
病理
内科学
哮喘
算法
药代动力学
作者
Jisheng Zou,Yi Lv,Lin Yu,Yaowen Chen,Xiaolei Zhang,Siqi Wang,Xuan Zhang,Xiaolei Zhang,Renhua Wu,Woo-Young Kang
标识
DOI:10.1186/s12880-024-01296-3
摘要
Accurate preoperative differentiation of the chronic rhinosinusitis (CRS) endotype between eosinophilic CRS (eCRS) and non-eosinophilic CRS (non-eCRS) is an important topic in predicting postoperative outcomes and administering personalized treatment. To this end, we have constructed a sinus CT dataset, which comprises CT scan data and pathological biopsy results from 192 patients of chronic rhinosinusitis with nasal polyps (CRSwNP), treated at the Second Affiliated Hospital of Shantou University Medical College between 2020 and 2022. To differentiate CRSwNP endotype on preoperative CT and improve efficiency at the same time, we developed a multi-view fusion model that contains a mini-architecture with each network of 10 layers by modifying the deep residual neural network. The proposed model is trained on a training set and evaluated on a test set. The multi-view deep learning fusion model achieved the area under the receiver-operating characteristics curve (AUC) of 0.991, accuracy of 0.965 and F1-Score of 0.970 in test set. We compared the performance of the mini-architecture with other lightweight networks on the same Sinus CT dataset. The experimental results demonstrate that the developed ResMini architecture contribute to competitive CRSwNP endotype identification modeling in terms of accuracy and parameter number.
科研通智能强力驱动
Strongly Powered by AbleSci AI