Satisficing Approach to On-Demand Ride Matching

满意选择 匹配(统计) 数学优化 运筹学 计算机科学 经济 数理经济学 数学 微观经济学 统计
作者
Dongling Rong,Xinyu Sun,Meilin Zhang,Shuangchi He
出处
期刊:Informs Journal on Computing 卷期号:37 (2): 413-427 被引量:2
标识
DOI:10.1287/ijoc.2021.0210
摘要

Online ride-hailing platforms have developed into an integral part of the transportation infrastructure in many countries. The primary task of a ride-hailing platform is to match trip requests to drivers in real time. Although both passengers and drivers prefer a prompt pickup to initiate the trips, it is often difficult to find a nearby driver for every passenger. If the driver is far from the pickup point, the passenger may cancel the trip while the driver is heading toward the pickup point. For the platform to be profitable, the trip cancellation rate must be maintained at a low level. We propose a computationally efficient data-driven approach to ride matching, in which a pickup time target is imposed on each trip request and an optimization problem is formulated to maximize the joint probability of all the pickup times meeting the targets. By adjusting pickup time targets individually, this approach may assign more high-value trip requests to nearby drivers, thus boosting the platform’s revenue while maintaining a low cancellation rate. In numerical experiments, the proposed approach outperforms several ride-matching policies used in practice. History: Accepted by Andrea Lodi, Area Editor for Design & Analysis of Algorithms—Discrete. Funding: This work of D. Rong and X. Sun was supported in part by the National Natural Science Foundation of China [Grant 71971165], the National Key Research and Development Program of China [Grant 2021YFB3301801], the MOE Project of Humanities and Social Science of China [Grant 19YJE630002], and the Soft Science Research Program of Shannxi [Grant 2018KRZ005]. The work of S. He was supported in part by the Singapore Ministry of Education Social Science Research Council [Grant MOE2022-SSRTG-029]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2021.0210 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2021.0210 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
梦境完成签到,获得积分10
1秒前
kobe0842完成签到,获得积分10
1秒前
寇博翔发布了新的文献求助10
2秒前
Ma发布了新的文献求助10
2秒前
萧瑟处完成签到,获得积分10
2秒前
柔弱的问梅完成签到,获得积分10
2秒前
Sunday驳回了Twonej应助
2秒前
余如龙完成签到,获得积分10
4秒前
合适的代秋完成签到 ,获得积分10
4秒前
4秒前
科研通AI6应助独特的斑马采纳,获得10
5秒前
ww发布了新的文献求助10
5秒前
5秒前
孙浩洋发布了新的文献求助10
5秒前
5秒前
陈翔完成签到,获得积分10
6秒前
Ava应助甜甜青旋采纳,获得10
6秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
Deathroid完成签到,获得积分10
8秒前
时荒发布了新的文献求助10
8秒前
小米完成签到,获得积分10
8秒前
9秒前
灵巧的斓完成签到,获得积分10
9秒前
10秒前
Aryac完成签到,获得积分10
11秒前
11秒前
科研通AI2S应助Ma采纳,获得10
11秒前
遲悟篤行完成签到,获得积分10
12秒前
尹雪儿完成签到,获得积分10
12秒前
充电宝应助qq采纳,获得10
13秒前
AhhHuang应助容若采纳,获得10
14秒前
14秒前
科目三应助炙热的平灵采纳,获得10
14秒前
liuanqi发布了新的文献求助10
14秒前
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667262
求助须知:如何正确求助?哪些是违规求助? 4884975
关于积分的说明 15119469
捐赠科研通 4826112
什么是DOI,文献DOI怎么找? 2583765
邀请新用户注册赠送积分活动 1537901
关于科研通互助平台的介绍 1496041