Satisficing Approach to On-Demand Ride Matching

满意选择 匹配(统计) 数学优化 运筹学 计算机科学 经济 数理经济学 数学 微观经济学 统计
作者
Dongling Rong,Xinyu Sun,Meilin Zhang,Shuangchi He
出处
期刊:Informs Journal on Computing 卷期号:37 (2): 413-427 被引量:2
标识
DOI:10.1287/ijoc.2021.0210
摘要

Online ride-hailing platforms have developed into an integral part of the transportation infrastructure in many countries. The primary task of a ride-hailing platform is to match trip requests to drivers in real time. Although both passengers and drivers prefer a prompt pickup to initiate the trips, it is often difficult to find a nearby driver for every passenger. If the driver is far from the pickup point, the passenger may cancel the trip while the driver is heading toward the pickup point. For the platform to be profitable, the trip cancellation rate must be maintained at a low level. We propose a computationally efficient data-driven approach to ride matching, in which a pickup time target is imposed on each trip request and an optimization problem is formulated to maximize the joint probability of all the pickup times meeting the targets. By adjusting pickup time targets individually, this approach may assign more high-value trip requests to nearby drivers, thus boosting the platform’s revenue while maintaining a low cancellation rate. In numerical experiments, the proposed approach outperforms several ride-matching policies used in practice. History: Accepted by Andrea Lodi, Area Editor for Design & Analysis of Algorithms—Discrete. Funding: This work of D. Rong and X. Sun was supported in part by the National Natural Science Foundation of China [Grant 71971165], the National Key Research and Development Program of China [Grant 2021YFB3301801], the MOE Project of Humanities and Social Science of China [Grant 19YJE630002], and the Soft Science Research Program of Shannxi [Grant 2018KRZ005]. The work of S. He was supported in part by the Singapore Ministry of Education Social Science Research Council [Grant MOE2022-SSRTG-029]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2021.0210 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2021.0210 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助科研通管家采纳,获得10
刚刚
天天快乐应助科研通管家采纳,获得10
刚刚
打打应助科研通管家采纳,获得10
刚刚
wanci应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
mufeixue完成签到,获得积分10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
1秒前
简单的乐驹应助科研通管家采纳,获得150
1秒前
1秒前
1秒前
传奇3应助科研通管家采纳,获得30
1秒前
bai发布了新的文献求助10
1秒前
Return应助科研通管家采纳,获得10
1秒前
Qingyong21应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
量子星尘发布了新的文献求助10
3秒前
李白完成签到,获得积分10
5秒前
风吹阔叶发布了新的文献求助30
5秒前
5秒前
6秒前
qing发布了新的文献求助30
6秒前
隐形小鸽子完成签到,获得积分20
6秒前
6秒前
文艺的青旋完成签到 ,获得积分10
7秒前
善学以致用应助sunshine采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
大模型应助mao采纳,获得10
8秒前
sterben完成签到,获得积分10
10秒前
安雯完成签到 ,获得积分10
10秒前
xiaokezhang发布了新的文献求助10
12秒前
12秒前
义气的水蓝完成签到 ,获得积分10
13秒前
4.8关闭了4.8文献求助
14秒前
lin发布了新的文献求助10
17秒前
顾矜应助盲点采纳,获得10
17秒前
18秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049