Optimization of warehouse picking to maximize the picked orders considering practical aspects

仓库 计算机科学 数学优化 运筹学 工业工程 工程类 数学 业务 营销
作者
Kimiya Rahmani Mokarrari,Taraneh Sowlati,J. Morley English,Michael Starkey
出处
期刊:Applied Mathematical Modelling [Elsevier]
被引量:1
标识
DOI:10.1016/j.apm.2024.06.037
摘要

Majority of previous studies on optimization of warehouse order picking lack real-world application and overlook complexities such as varying items' weight, workload balance, and heterogeneous pickers. To address these issues, in this study, mathematical programming models are developed based on two approaches to assign orders to pickers and determine pickers' routes in a North American consumer goods warehouse. Both approaches maximize the number of picked orders. However, in the simultaneous modelling approach, decisions are made in one model, while in the sequential modelling approach, first routing decisions then order assignment decisions are made. The sequential modelling approach compared with the simultaneous one yields better results in a shorter time. For the considered warehouse, the results suggest that the warehouse may not be able to handle more than 700 orders per shift without expanding its workforce. Furthermore, adding one picker results in an approximate 2% increase in picked orders. Additionally, balancing pickers' workload is more effective when there are fewer than 600 orders available for picking per shift, because with a higher number of orders, pickers remain busy throughout the entire shift. The proposed mathematical modelling approaches enable warehouse managers and staff to process more orders with available resources (equipment, time, staff) and make better decisions using available data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
吨吨喝水关注了科研通微信公众号
1秒前
酷波er应助某只橘猫君采纳,获得10
1秒前
1秒前
stt发布了新的文献求助10
1秒前
1秒前
Ling完成签到,获得积分10
1秒前
TanFT完成签到,获得积分10
2秒前
笙歌自若发布了新的文献求助10
2秒前
2秒前
CipherSage应助积极的凌波采纳,获得10
3秒前
3秒前
烟花应助欣慰硬币采纳,获得10
3秒前
老大爷滴滴完成签到,获得积分10
3秒前
3秒前
3秒前
SciGPT应助LEMON采纳,获得10
4秒前
搜集达人应助叶飞荷采纳,获得10
4秒前
wxy完成签到,获得积分10
4秒前
5秒前
弄香完成签到,获得积分10
5秒前
gguc完成签到,获得积分10
5秒前
5秒前
无聊又夏完成签到,获得积分10
6秒前
今后应助木野狐采纳,获得10
6秒前
7秒前
小木木壮发布了新的文献求助10
7秒前
7秒前
7秒前
欢喜从霜发布了新的文献求助10
7秒前
8秒前
Ll发布了新的文献求助10
8秒前
茶艺如何发布了新的文献求助10
9秒前
落后秋柳发布了新的文献求助10
9秒前
科研通AI5应助大方嵩采纳,获得10
9秒前
10秒前
10秒前
海鸥海鸥发布了新的文献求助10
10秒前
南敏株完成签到,获得积分10
11秒前
稳重完成签到 ,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762