Identifying mining-induced chromium contamination in soil through visible-near infrared spectroscopy and machine learning

污染 红外线的 光谱学 红外光谱学 材料科学 环境科学 环境化学 冶金 化学 光学 物理 生物 生态学 天文 有机化学
作者
Chongchong Qi,Mengting Wu,Kechao Li,Tao Hu,Danial Jahed Armaghani,Qiusong Chen,Erol Yılmaz
标识
DOI:10.1016/j.gsme.2024.05.001
摘要

The extraction, purification, and utilization of mineral resources have been among the largest anthropogenic sources of chromium (Cr) in soil. Determining Cr contamination in soil is a key issue prior to its appropriate remediation. Nevertheless, the efficient identification of large-scale soil Cr contamination requires continuous research. The present study proposes a continental-scale method to rapidly identify soil Cr contamination using visible-near infrared spectroscopy (vis-NIR) and machine learning (ML). A large dataset containing 18,675 topsoil samples from the Land Use/Land Cover Area Frame Survey 2009 projects across Europe was compiled. Five advanced ML algorithms were compared, and hyperparameter optimization was conducted using the grid search method. Permutation importance was employed to calculate the rank of each spectral wavelength, shedding light on the most sensitive spectral wavelength for Cr contamination. Results indicate that hyperparameter optimization had the most significant performance improvement on support vector machine (SVM), exhibiting an increase in training performance from 0.795 to 0.868. The achieved optimal SVM accuracy, area under the receiver operating feature curve, sensitivity, and specificity of 0.78, 0.85, 0.85, and 0.66, respectively, indicating excellent predictive performance on the Cr contamination classification. The optimal SVM model revealed that the most important spectral band for classifying Cr contamination was 1430–1433 nm. This finding implies that the adsorption of molecular water was closely related to the classification of Cr contamination. The current study introduces the first continental-scale identification of Cr contamination using vis-NIR, which has excellent guiding significance for Cr remediation and the identification of other heavy metals using vis-NIR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
开心的芹菜完成签到,获得积分10
1秒前
2秒前
莹莹啊发布了新的文献求助10
2秒前
帅气的雅青完成签到,获得积分10
2秒前
3秒前
apocalypse完成签到 ,获得积分10
3秒前
111完成签到 ,获得积分10
3秒前
传奇3应助离线采纳,获得10
3秒前
Guai发布了新的文献求助10
3秒前
4秒前
5秒前
土豪的莺发布了新的文献求助10
5秒前
5秒前
Gying发布了新的文献求助10
5秒前
FashionBoy应助明亮采纳,获得10
5秒前
11111111发布了新的文献求助10
6秒前
傻芙芙的发布了新的文献求助10
6秒前
隐形曼青应助何pengda采纳,获得10
6秒前
天天快乐应助suo采纳,获得10
7秒前
7秒前
7秒前
苹果发布了新的文献求助10
8秒前
Songzi完成签到,获得积分10
9秒前
ldy发布了新的文献求助10
9秒前
9秒前
机灵听蓉完成签到,获得积分20
10秒前
WSS发布了新的文献求助10
10秒前
LS完成签到 ,获得积分10
10秒前
12秒前
搜集达人应助ark861023采纳,获得10
13秒前
zakarya完成签到,获得积分10
13秒前
fy发布了新的文献求助30
13秒前
14秒前
14秒前
sam发布了新的文献求助10
14秒前
14秒前
hx完成签到,获得积分10
15秒前
16秒前
zakarya发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5330614
求助须知:如何正确求助?哪些是违规求助? 4470121
关于积分的说明 13911993
捐赠科研通 4363392
什么是DOI,文献DOI怎么找? 2396902
邀请新用户注册赠送积分活动 1390329
关于科研通互助平台的介绍 1361045