Identifying mining-induced chromium contamination in soil through visible-near infrared spectroscopy and machine learning

污染 红外线的 光谱学 红外光谱学 材料科学 环境科学 环境化学 冶金 化学 光学 物理 生物 生态学 天文 有机化学
作者
Chongchong Qi,Mengting Wu,Kechao Li,Tao Hu,Danial Jahed Armaghani,Qiusong Chen,Erol Yılmaz
标识
DOI:10.1016/j.gsme.2024.05.001
摘要

The extraction, purification, and utilization of mineral resources have been among the largest anthropogenic sources of chromium (Cr) in soil. Determining Cr contamination in soil is a key issue prior to its appropriate remediation. Nevertheless, the efficient identification of large-scale soil Cr contamination requires continuous research. The present study proposes a continental-scale method to rapidly identify soil Cr contamination using visible-near infrared spectroscopy (vis-NIR) and machine learning (ML). A large dataset containing 18,675 topsoil samples from the Land Use/Land Cover Area Frame Survey 2009 projects across Europe was compiled. Five advanced ML algorithms were compared, and hyperparameter optimization was conducted using the grid search method. Permutation importance was employed to calculate the rank of each spectral wavelength, shedding light on the most sensitive spectral wavelength for Cr contamination. Results indicate that hyperparameter optimization had the most significant performance improvement on support vector machine (SVM), exhibiting an increase in training performance from 0.795 to 0.868. The achieved optimal SVM accuracy, area under the receiver operating feature curve, sensitivity, and specificity of 0.78, 0.85, 0.85, and 0.66, respectively, indicating excellent predictive performance on the Cr contamination classification. The optimal SVM model revealed that the most important spectral band for classifying Cr contamination was 1430–1433 nm. This finding implies that the adsorption of molecular water was closely related to the classification of Cr contamination. The current study introduces the first continental-scale identification of Cr contamination using vis-NIR, which has excellent guiding significance for Cr remediation and the identification of other heavy metals using vis-NIR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shihuima发布了新的文献求助10
1秒前
2秒前
小星星完成签到,获得积分10
2秒前
鱼叮叮完成签到,获得积分10
3秒前
VV发布了新的文献求助50
3秒前
3秒前
5秒前
5秒前
7秒前
7秒前
dz完成签到,获得积分10
7秒前
9秒前
lzj发布了新的文献求助10
9秒前
11秒前
fruchtjelly完成签到,获得积分20
12秒前
任性映秋发布了新的文献求助10
12秒前
yutian928发布了新的文献求助10
13秒前
13秒前
dz发布了新的文献求助10
14秒前
15秒前
fruchtjelly发布了新的文献求助10
15秒前
15秒前
Truman发布了新的文献求助10
17秒前
18秒前
bkagyin应助化学y采纳,获得10
18秒前
Jasper应助舒心冷珍采纳,获得10
19秒前
20秒前
FashionBoy应助风趣的胜采纳,获得10
20秒前
20秒前
自觉笑南完成签到,获得积分10
21秒前
22秒前
闷闷应助abc采纳,获得10
22秒前
22秒前
留胡子的代天完成签到,获得积分10
22秒前
23秒前
23秒前
2799完成签到,获得积分10
25秒前
然然然完成签到 ,获得积分10
27秒前
27秒前
GOAT发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5181974
求助须知:如何正确求助?哪些是违规求助? 4368782
关于积分的说明 13604227
捐赠科研通 4220207
什么是DOI,文献DOI怎么找? 2314547
邀请新用户注册赠送积分活动 1313259
关于科研通互助平台的介绍 1261945