Identifying mining-induced chromium contamination in soil through visible-near infrared spectroscopy and machine learning

污染 红外线的 光谱学 红外光谱学 材料科学 环境科学 环境化学 冶金 化学 光学 物理 生物 生态学 天文 有机化学
作者
Chongchong Qi,Mengting Wu,Kechao Li,Tao Hu,Danial Jahed Armaghani,Qiusong Chen,Erol Yılmaz
标识
DOI:10.1016/j.gsme.2024.05.001
摘要

The extraction, purification, and utilization of mineral resources have been among the largest anthropogenic sources of chromium (Cr) in soil. Determining Cr contamination in soil is a key issue prior to its appropriate remediation. Nevertheless, the efficient identification of large-scale soil Cr contamination requires continuous research. The present study proposes a continental-scale method to rapidly identify soil Cr contamination using visible-near infrared spectroscopy (vis-NIR) and machine learning (ML). A large dataset containing 18,675 topsoil samples from the Land Use/Land Cover Area Frame Survey 2009 projects across Europe was compiled. Five advanced ML algorithms were compared, and hyperparameter optimization was conducted using the grid search method. Permutation importance was employed to calculate the rank of each spectral wavelength, shedding light on the most sensitive spectral wavelength for Cr contamination. Results indicate that hyperparameter optimization had the most significant performance improvement on support vector machine (SVM), exhibiting an increase in training performance from 0.795 to 0.868. The achieved optimal SVM accuracy, area under the receiver operating feature curve, sensitivity, and specificity of 0.78, 0.85, 0.85, and 0.66, respectively, indicating excellent predictive performance on the Cr contamination classification. The optimal SVM model revealed that the most important spectral band for classifying Cr contamination was 1430–1433 nm. This finding implies that the adsorption of molecular water was closely related to the classification of Cr contamination. The current study introduces the first continental-scale identification of Cr contamination using vis-NIR, which has excellent guiding significance for Cr remediation and the identification of other heavy metals using vis-NIR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
被动科研发布了新的文献求助10
刚刚
shuqian完成签到,获得积分10
1秒前
暴躁的香旋完成签到,获得积分10
2秒前
2秒前
CHINA_C13发布了新的文献求助150
2秒前
3秒前
3秒前
4秒前
cat_head发布了新的文献求助10
4秒前
Sally完成签到,获得积分10
5秒前
L罗1完成签到,获得积分10
5秒前
浮游应助zz采纳,获得10
5秒前
5秒前
ding应助Windycityguy采纳,获得10
6秒前
青青发布了新的文献求助10
6秒前
7秒前
7秒前
个性的紫菜应助雨寒采纳,获得50
7秒前
8秒前
zhuzhu发布了新的文献求助10
8秒前
奋斗映寒完成签到,获得积分10
8秒前
8秒前
Breathe发布了新的文献求助10
8秒前
淡然的冰海完成签到,获得积分10
9秒前
yanyimeng发布了新的文献求助10
9秒前
猫的淡淡发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
10秒前
刻苦的三问应助热情蜗牛采纳,获得10
11秒前
搜集达人应助kkkkkkkk采纳,获得10
11秒前
情怀应助yutian928采纳,获得10
12秒前
爆米花应助彭泽林采纳,获得10
12秒前
ffw1发布了新的文献求助10
13秒前
13秒前
呆萌的正豪完成签到,获得积分10
13秒前
13秒前
13秒前
阿鸢发布了新的文献求助20
13秒前
无昵称完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403