Prediction value study of breast cancer tumor infiltrating lymphocyte levels based on ultrasound imaging radiomics

医学 列线图 接收机工作特性 超声波 乳腺癌 逻辑回归 放射科 置信区间 单变量分析 单变量 灰度 淋巴结 癌症 多元分析 肿瘤科 多元统计 内科学 人工智能 机器学习 计算机科学 像素
作者
Min Zhang,Xuanyu Li,Pin Zhou,Panpan Zhang,Gang Wang,Xian-fang Lin
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:14
标识
DOI:10.3389/fonc.2024.1411261
摘要

Objective Construct models based on grayscale ultrasound and radiomics and compare the efficacy of different models in preoperatively predicting the level of tumor-infiltrating lymphocytes in breast cancer. Materials and methods This study retrospectively collected clinical data and preoperative ultrasound images from 185 breast cancer patients confirmed by surgical pathology. Patients were randomly divided into a training set (n=111) and a testing set (n=74) using a 6:4 ratio. Based on a 10% threshold for tumor-infiltrating lymphocytes (TIL) levels, patients were classified into low-level and high-level groups. Radiomic features were extracted and selected using the training set. The evaluation included assessing the relationship between TIL levels and both radiomic features and grayscale ultrasound features. Subsequently, grayscale ultrasound models, radiomic models, and nomograms combining radiomics score (Rad-score) and grayscale ultrasound features were established. The predictive performance of different models was evaluated through receiver operating characteristic (ROC) analysis. Calibration curves assessed the fit of the nomograms, and decision curve analysis (DCA) evaluated the clinical effectiveness of the models. Results Univariate analyses and multivariate logistic regression analyses revealed that indistinct margin (P<0.001, Odds Ratio [OR]=0.214, 95% Confidence Interval [CI]: 0.103-1.026), posterior acoustic enhancement (P=0.027, OR=2.585, 95% CI: 1.116-5.987), and ipsilateral axillary lymph node enlargement (P=0.001, OR=4.214, 95% CI: 1.798-9.875) were independent predictive factors for high levels of TIL in breast cancer. In comparison to grayscale ultrasound model (Training set: Area under curve [AUC] 0.795; Testing set: AUC 0.720) and radiomics model (Training set: AUC 0.803; Testing set: AUC 0.759), the nomogram demonstrated superior discriminative ability on both the training (AUC 0.884) and testing (AUC 0.820) datasets. Calibration curves indicated high consistency between the nomogram model’s predicted probability of breast cancer TIL levels and the actual occurrence probability. DCA revealed that the radiomics model and the nomogram model achieved higher clinical net benefits compared to the grayscale ultrasound model. Conclusion The nomogram based on preoperative ultrasound radiomics features exhibits robust predictive capacity for the non-invasive evaluation of breast cancer TIL levels, potentially providing a significant basis for individualized treatment decisions in breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
OMR123完成签到,获得积分10
1秒前
虚幻采枫完成签到,获得积分10
2秒前
3秒前
混沌完成签到,获得积分10
3秒前
xdh完成签到,获得积分10
5秒前
关键词发布了新的文献求助30
5秒前
科研渣渣完成签到,获得积分10
6秒前
乐乐应助曾无忧采纳,获得10
7秒前
牛人完成签到,获得积分10
8秒前
abbsdan完成签到,获得积分10
8秒前
快乐星球发布了新的文献求助10
9秒前
认真的一刀完成签到,获得积分10
9秒前
Reader01完成签到 ,获得积分10
11秒前
兀炎完成签到,获得积分10
14秒前
15秒前
自觉香菇完成签到 ,获得积分10
18秒前
19秒前
Wiggins完成签到,获得积分10
20秒前
踟蹰完成签到,获得积分10
21秒前
拾柒完成签到 ,获得积分10
21秒前
多金完成签到,获得积分10
22秒前
腿毛没啦完成签到,获得积分10
23秒前
NexusExplorer应助过时的砖头采纳,获得10
23秒前
曾无忧发布了新的文献求助10
23秒前
QL完成签到 ,获得积分10
25秒前
小丸子完成签到 ,获得积分10
27秒前
28秒前
希望天下0贩的0应助白椋采纳,获得10
29秒前
王王完成签到,获得积分10
29秒前
29秒前
纷纭完成签到,获得积分10
30秒前
31秒前
风趣烧鹅发布了新的文献求助20
31秒前
小十二完成签到,获得积分10
32秒前
吕小布完成签到,获得积分10
33秒前
Hello应助老肥采纳,获得10
33秒前
大佬救命发布了新的文献求助10
33秒前
margine完成签到,获得积分10
34秒前
SciGPT应助丹yeah采纳,获得10
34秒前
端木熙发布了新的文献求助10
37秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162599
求助须知:如何正确求助?哪些是违规求助? 2813541
关于积分的说明 7900687
捐赠科研通 2473052
什么是DOI,文献DOI怎么找? 1316652
科研通“疑难数据库(出版商)”最低求助积分说明 631452
版权声明 602175