已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction value study of breast cancer tumor infiltrating lymphocyte levels based on ultrasound imaging radiomics

医学 列线图 接收机工作特性 超声波 乳腺癌 逻辑回归 放射科 置信区间 单变量分析 单变量 灰度 淋巴结 癌症 多元分析 肿瘤科 多元统计 内科学 人工智能 机器学习 计算机科学 像素
作者
Min Zhang,Xuanyu Li,Pin Zhou,Panpan Zhang,Gang Wang,Xian-fang Lin
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:14
标识
DOI:10.3389/fonc.2024.1411261
摘要

Objective Construct models based on grayscale ultrasound and radiomics and compare the efficacy of different models in preoperatively predicting the level of tumor-infiltrating lymphocytes in breast cancer. Materials and methods This study retrospectively collected clinical data and preoperative ultrasound images from 185 breast cancer patients confirmed by surgical pathology. Patients were randomly divided into a training set (n=111) and a testing set (n=74) using a 6:4 ratio. Based on a 10% threshold for tumor-infiltrating lymphocytes (TIL) levels, patients were classified into low-level and high-level groups. Radiomic features were extracted and selected using the training set. The evaluation included assessing the relationship between TIL levels and both radiomic features and grayscale ultrasound features. Subsequently, grayscale ultrasound models, radiomic models, and nomograms combining radiomics score (Rad-score) and grayscale ultrasound features were established. The predictive performance of different models was evaluated through receiver operating characteristic (ROC) analysis. Calibration curves assessed the fit of the nomograms, and decision curve analysis (DCA) evaluated the clinical effectiveness of the models. Results Univariate analyses and multivariate logistic regression analyses revealed that indistinct margin (P<0.001, Odds Ratio [OR]=0.214, 95% Confidence Interval [CI]: 0.103-1.026), posterior acoustic enhancement (P=0.027, OR=2.585, 95% CI: 1.116-5.987), and ipsilateral axillary lymph node enlargement (P=0.001, OR=4.214, 95% CI: 1.798-9.875) were independent predictive factors for high levels of TIL in breast cancer. In comparison to grayscale ultrasound model (Training set: Area under curve [AUC] 0.795; Testing set: AUC 0.720) and radiomics model (Training set: AUC 0.803; Testing set: AUC 0.759), the nomogram demonstrated superior discriminative ability on both the training (AUC 0.884) and testing (AUC 0.820) datasets. Calibration curves indicated high consistency between the nomogram model’s predicted probability of breast cancer TIL levels and the actual occurrence probability. DCA revealed that the radiomics model and the nomogram model achieved higher clinical net benefits compared to the grayscale ultrasound model. Conclusion The nomogram based on preoperative ultrasound radiomics features exhibits robust predictive capacity for the non-invasive evaluation of breast cancer TIL levels, potentially providing a significant basis for individualized treatment decisions in breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
午凌二发布了新的文献求助10
2秒前
zhouzhiyi完成签到,获得积分20
3秒前
3秒前
zhu发布了新的文献求助10
4秒前
jia发布了新的文献求助10
5秒前
0107发布了新的文献求助10
6秒前
zwx发布了新的文献求助10
6秒前
兴奋的书包完成签到,获得积分10
9秒前
李雪蒙完成签到,获得积分10
10秒前
10秒前
貘和完成签到 ,获得积分10
10秒前
li发布了新的文献求助50
10秒前
赘婿应助涨涨涨采纳,获得10
11秒前
绿豆发布了新的文献求助10
11秒前
情怀应助keke采纳,获得10
12秒前
13秒前
13秒前
13秒前
彭于晏应助淡淡的南风采纳,获得10
14秒前
CipherSage应助淡淡的南风采纳,获得30
14秒前
上官若男应助淡淡的南风采纳,获得30
14秒前
所所应助一颗橙子采纳,获得10
14秒前
14秒前
Akim应助淡淡的南风采纳,获得10
14秒前
NexusExplorer应助淡淡的南风采纳,获得20
14秒前
研友_VZG7GZ应助淡淡的南风采纳,获得10
14秒前
Prospect完成签到,获得积分10
15秒前
16秒前
zwx完成签到,获得积分20
16秒前
16秒前
17秒前
18秒前
斯文败类应助小小采纳,获得20
18秒前
20秒前
三水发布了新的文献求助10
20秒前
21秒前
21秒前
21秒前
21秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 941
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5443502
求助须知:如何正确求助?哪些是违规求助? 4553396
关于积分的说明 14241800
捐赠科研通 4475069
什么是DOI,文献DOI怎么找? 2452248
邀请新用户注册赠送积分活动 1443172
关于科研通互助平台的介绍 1418794