Molecular separation-assisted label-free SERS combined with machine learning for nasopharyngeal cancer screening and radiotherapy resistance prediction

鼻咽癌 放射治疗 癌症 计算机科学 鼻咽癌 医学 人工智能 机器学习 肿瘤科 内科学
作者
Jun Zhang,Youliang Weng,Yi Liu,Li Wang,Shangyuan Feng,Sufang Qiu,Duo Lin
出处
期刊:Journal of Photochemistry and Photobiology B-biology [Elsevier]
卷期号:257: 112968-112968
标识
DOI:10.1016/j.jphotobiol.2024.112968
摘要

Nasopharyngeal cancer (NPC) is a malignant tumor with high prevalence in Southeast Asia and highly invasive and metastatic characteristics. Radiotherapy is the primary strategy for NPC treatment, however there is still lack of effect method for predicting the radioresistance that is the main reason for treatment failure. Herein, the molecular profiles of patient plasma from NPC with radiotherapy sensitivity and resistance groups as well as healthy group, respectively, were explored by label-free surface enhanced Raman spectroscopy (SERS) based on surface plasmon resonance for the first time. Especially, the components with different molecular weight sizes were analyzed via the separation process, helping to avoid the possible missing of diagnostic information due to the competitive adsorption. Following that, robust machine learning algorithm based on principal component analysis and linear discriminant analysis (PCA-LDA) was employed to extract the feature of blood-SERS data and establish an effective predictive model with the accuracy of 96.7% for identifying the radiotherapy resistance subjects from sensitivity ones, and 100% for identifying the NPC subjects from healthy ones. This work demonstrates the potential of molecular separation-assisted label-free SERS combined with machine learning for NPC screening and treatment strategy guidance in clinical scenario.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
友好盼波应助科研通管家采纳,获得10
刚刚
逆天了呀完成签到,获得积分10
刚刚
刚刚
小二郎应助科研通管家采纳,获得10
刚刚
求助应助科研通管家采纳,获得10
刚刚
橘绿发布了新的文献求助10
刚刚
mhl11应助科研通管家采纳,获得10
刚刚
田様应助科研通管家采纳,获得10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
li1发布了新的文献求助10
1秒前
西瓜藤子发布了新的文献求助10
1秒前
1秒前
2秒前
希望天下0贩的0应助hhh采纳,获得10
2秒前
符谷秋完成签到,获得积分20
2秒前
3秒前
页亚亚发布了新的文献求助10
3秒前
3秒前
bkagyin应助小崔采纳,获得10
3秒前
jason04124发布了新的文献求助10
4秒前
4秒前
Hyperme发布了新的文献求助10
4秒前
Albert发布了新的文献求助30
5秒前
5秒前
yongtao完成签到,获得积分10
6秒前
牧尔芙发布了新的文献求助10
6秒前
TaoJ发布了新的文献求助10
6秒前
会编程真是太好了完成签到 ,获得积分10
6秒前
菜鸡完成签到,获得积分10
7秒前
7秒前
111111完成签到,获得积分10
7秒前
PhD_HanWu完成签到,获得积分10
7秒前
脑洞疼应助little2000采纳,获得10
7秒前
huadao发布了新的文献求助10
8秒前
8秒前
9秒前
梓墨发布了新的文献求助10
9秒前
WXC完成签到,获得积分20
10秒前
菜鸡发布了新的文献求助10
10秒前
852应助夏侯一鸣采纳,获得10
10秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
錢鍾書楊絳親友書札 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3296982
求助须知:如何正确求助?哪些是违规求助? 2932577
关于积分的说明 8457843
捐赠科研通 2605253
什么是DOI,文献DOI怎么找? 1422179
科研通“疑难数据库(出版商)”最低求助积分说明 661332
邀请新用户注册赠送积分活动 644534