Brain tumor segmentation in MRI with multi-modality spatial information enhancement and boundary shape correction

模态(人机交互) 分割 人工智能 计算机视觉 边界(拓扑) 卷积神经网络 空间分析 计算机科学 模式识别(心理学) 图像分割 数学 数学分析 统计
作者
Zhiqin Zhu,Ziyu Wang,Guanqiu Qi,Neal Mazur,Pan Yang,Yü Liu
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:153: 110553-110553 被引量:72
标识
DOI:10.1016/j.patcog.2024.110553
摘要

Brain tumor segmentation is currently of a priori guiding significance in medical research and clinical diagnosis. Brain tumor segmentation techniques can accurately partition different tumor areas on multi-modality images captured by magnetic resonance imaging (MRI). Due to the unpredictable pathological process of brain tumor generation and growth, brain tumor images often show irregular shapes and uneven internal gray levels. Existing neural network-based segmentation methods with an encoding/decoding structure can perform image segmentation to some extent. However, they ignore issues such as differences in multi-modality information, loss of spatial information, and under-utilization of boundary information, thereby limiting the further improvement of segmentation accuracy. This paper proposes a multimodal spatial information enhancement and boundary shape correction method consisting of a modality information extraction (MIE) module, a spatial information enhancement (SIE) module, and a boundary shape correction (BSC) module. The above three modules act on the input, backbone, and loss functions of deep convolutional networks (DCNN), respectively, and compose an end-to-end 3D brain tumor segmentation model. The three proposed modules can solve the low utilization rate of effective modality information, the insufficient spatial information acquisition ability, and the improper segmentation of key boundary positions can be solved. The proposed method was validated on BraTS2017, 2018, and 2019 datasets. Comparative experimental results confirmed the effectiveness and superiority of the proposed method over state-of-the-art segmentation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
打工肥仔应助果实采纳,获得10
3秒前
4秒前
醋溜荧光大蒜完成签到 ,获得积分10
4秒前
6秒前
llewis完成签到,获得积分10
6秒前
情怀应助学海驰航采纳,获得10
7秒前
Skyyi完成签到,获得积分10
8秒前
陈陈发布了新的文献求助10
8秒前
8秒前
成就觅翠发布了新的文献求助10
8秒前
思源应助孤独梦安采纳,获得10
9秒前
9秒前
顾矜应助LL采纳,获得10
9秒前
centlay发布了新的文献求助10
10秒前
12秒前
Skyyi发布了新的文献求助10
12秒前
Sli完成签到,获得积分10
13秒前
达夫斯基完成签到,获得积分10
13秒前
汉堡包应助laxy采纳,获得10
14秒前
14秒前
YYY发布了新的文献求助10
15秒前
爽哥发布了新的文献求助30
15秒前
天天快乐应助成就觅翠采纳,获得10
15秒前
wyp0101完成签到,获得积分10
16秒前
16秒前
李健应助liu采纳,获得10
16秒前
17秒前
21发布了新的文献求助10
18秒前
小二郎应助白衣修身采纳,获得10
18秒前
piu完成签到,获得积分10
19秒前
完美世界应助有魅力鬼神采纳,获得10
19秒前
sun完成签到,获得积分20
20秒前
稳重无招发布了新的文献求助10
20秒前
大模型应助扎心采纳,获得10
20秒前
21秒前
八千完成签到,获得积分20
21秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961321
求助须知:如何正确求助?哪些是违规求助? 3507666
关于积分的说明 11137254
捐赠科研通 3240099
什么是DOI,文献DOI怎么找? 1790749
邀请新用户注册赠送积分活动 872460
科研通“疑难数据库(出版商)”最低求助积分说明 803271