Brain tumor segmentation in MRI with multi-modality spatial information enhancement and boundary shape correction

模态(人机交互) 分割 人工智能 计算机视觉 边界(拓扑) 卷积神经网络 空间分析 计算机科学 模式识别(心理学) 图像分割 数学 数学分析 统计
作者
Zhiqin Zhu,Ziyu Wang,Guanqiu Qi,Neal Mazur,Pan Yang,Yü Liu
出处
期刊:Pattern Recognition [Elsevier]
卷期号:153: 110553-110553 被引量:40
标识
DOI:10.1016/j.patcog.2024.110553
摘要

Brain tumor segmentation is currently of a priori guiding significance in medical research and clinical diagnosis. Brain tumor segmentation techniques can accurately partition different tumor areas on multi-modality images captured by magnetic resonance imaging (MRI). Due to the unpredictable pathological process of brain tumor generation and growth, brain tumor images often show irregular shapes and uneven internal gray levels. Existing neural network-based segmentation methods with an encoding/decoding structure can perform image segmentation to some extent. However, they ignore issues such as differences in multi-modality information, loss of spatial information, and under-utilization of boundary information, thereby limiting the further improvement of segmentation accuracy. This paper proposes a multimodal spatial information enhancement and boundary shape correction method consisting of a modality information extraction (MIE) module, a spatial information enhancement (SIE) module, and a boundary shape correction (BSC) module. The above three modules act on the input, backbone, and loss functions of deep convolutional networks (DCNN), respectively, and compose an end-to-end 3D brain tumor segmentation model. The three proposed modules can solve the low utilization rate of effective modality information, the insufficient spatial information acquisition ability, and the improper segmentation of key boundary positions can be solved. The proposed method was validated on BraTS2017, 2018, and 2019 datasets. Comparative experimental results confirmed the effectiveness and superiority of the proposed method over state-of-the-art segmentation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jin完成签到,获得积分10
刚刚
Akim应助外向如冬采纳,获得10
1秒前
1秒前
1秒前
浩浩大人完成签到,获得积分20
3秒前
3秒前
狂野的雅绿完成签到 ,获得积分10
3秒前
WMT完成签到 ,获得积分10
3秒前
正在输入中完成签到,获得积分10
3秒前
Lucas应助小小学术人采纳,获得10
4秒前
阳光刺眼完成签到 ,获得积分10
4秒前
Akim应助Promise采纳,获得10
4秒前
斯文败类应助小汪采纳,获得10
4秒前
4秒前
小宇发布了新的文献求助10
5秒前
5秒前
Tira完成签到,获得积分10
5秒前
SciGPT应助23采纳,获得10
5秒前
科研cc完成签到,获得积分20
6秒前
咕噜仔发布了新的文献求助10
6秒前
牛肉干关注了科研通微信公众号
7秒前
cherry发布了新的文献求助10
7秒前
7秒前
科研通AI5应助fxx2021采纳,获得10
7秒前
斯文败类应助黎缘采纳,获得10
7秒前
8秒前
2090完成签到,获得积分10
8秒前
8秒前
Lynn完成签到,获得积分10
9秒前
卷心菜完成签到,获得积分10
10秒前
Patrick完成签到,获得积分10
10秒前
从容襄完成签到,获得积分10
10秒前
11秒前
核桃酥完成签到,获得积分20
11秒前
华仔应助王汉韬采纳,获得10
11秒前
11秒前
andyxrz发布了新的文献求助10
12秒前
醉舞烟罗发布了新的文献求助10
12秒前
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672