Probe Population Based Initialization and Genetic Pool Based Reproduction for Evolutionary Bi-Objective Feature Selection

初始化 选择(遗传算法) 人工智能 人口 特征选择 进化计算 计算机科学 进化算法 遗传算法 繁殖 机器学习 模式识别(心理学) 生物 遗传学 人口学 社会学 程序设计语言
作者
Hang Xu,Bing Xue,Mengjie Zhang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/tevc.2024.3403655
摘要

Feature selection can be treated as a bi-objective optimization problem, if aimed at minimizing both classification error and number of selected features, suitable for multi-objective evolutionary algorithms (MOEAs) to solve. However, traditional MOEAs would encounter setbacks when the number of features explodes to high dimensionality, causing difficulties for searching optimal solutions in large-scale decision space. In this paper, we propose two general methods applicable to integrate with existing MOEA frameworks in addressing bi-objective feature selection, especially for high-dimensional datasets. One based on probe populations for improving initialization is called PPI, and the other based on genetic pools for improving reproduction is called GPR, both aimed at boosting the search ability of MOEAs. Tested on 20 datasets, in terms of four performance metrics (including the computational time), the experimental section can be divided into three parts. First, five state-of-the-art MOEAs are used as baseline algorithms to integrate with PPI and GPR, while the integrated versions are then compared with their own baselines. Second, the PPI method is additionally compared with three representative feature selection initialization methods to further identify its advantages. Third, a complete PPI and GPR based MOEA (termed PGMOEA) is proposed to compare with three cutting-edge evolutionary feature selection algorithms to further position its search ability. In general, it is suggested from the empirical results that either PPI or GPR can significantly improve the overall performance of each integrated MOEA, while adopting both of them takes the most complementary effect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天真珈百璃完成签到,获得积分10
刚刚
Arthur发布了新的文献求助10
刚刚
刚刚
汉堡包应助guons采纳,获得10
刚刚
赘婿应助火星上誉采纳,获得10
1秒前
张牧之完成签到 ,获得积分10
1秒前
1秒前
Rosie发布了新的文献求助100
1秒前
很多奶油完成签到 ,获得积分10
1秒前
2秒前
屹男发布了新的文献求助10
2秒前
demo完成签到,获得积分10
2秒前
安静的一一完成签到 ,获得积分10
2秒前
2秒前
美羊羊发布了新的文献求助10
2秒前
3秒前
4秒前
ff发布了新的文献求助10
4秒前
11完成签到,获得积分10
5秒前
yangyang2021发布了新的文献求助10
5秒前
小孙完成签到,获得积分10
5秒前
6秒前
墨鱼烩饭完成签到,获得积分10
6秒前
6秒前
Felix发布了新的文献求助30
6秒前
小张完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
gyusbjshaxb完成签到,获得积分10
8秒前
9秒前
shilong.yang发布了新的文献求助10
9秒前
采集瘤胃液一次完成签到 ,获得积分10
10秒前
ren完成签到,获得积分10
10秒前
韦颖发布了新的文献求助10
10秒前
英俊的铭应助cjt采纳,获得10
11秒前
o30发布了新的文献求助10
11秒前
12秒前
12秒前
大气元彤完成签到,获得积分10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969335
求助须知:如何正确求助?哪些是违规求助? 3514162
关于积分的说明 11172430
捐赠科研通 3249456
什么是DOI,文献DOI怎么找? 1794853
邀请新用户注册赠送积分活动 875437
科研通“疑难数据库(出版商)”最低求助积分说明 804809