亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Probe Population Based Initialization and Genetic Pool Based Reproduction for Evolutionary Bi-Objective Feature Selection

初始化 选择(遗传算法) 人工智能 人口 特征选择 进化计算 计算机科学 进化算法 遗传算法 繁殖 机器学习 模式识别(心理学) 生物 遗传学 人口学 社会学 程序设计语言
作者
Hang Xu,Bing Xue,Mengjie Zhang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:6
标识
DOI:10.1109/tevc.2024.3403655
摘要

Feature selection can be treated as a bi-objective optimization problem, if aimed at minimizing both classification error and number of selected features, suitable for multi-objective evolutionary algorithms (MOEAs) to solve. However, traditional MOEAs would encounter setbacks when the number of features explodes to high dimensionality, causing difficulties for searching optimal solutions in large-scale decision space. In this paper, we propose two general methods applicable to integrate with existing MOEA frameworks in addressing bi-objective feature selection, especially for high-dimensional datasets. One based on probe populations for improving initialization is called PPI, and the other based on genetic pools for improving reproduction is called GPR, both aimed at boosting the search ability of MOEAs. Tested on 20 datasets, in terms of four performance metrics (including the computational time), the experimental section can be divided into three parts. First, five state-of-the-art MOEAs are used as baseline algorithms to integrate with PPI and GPR, while the integrated versions are then compared with their own baselines. Second, the PPI method is additionally compared with three representative feature selection initialization methods to further identify its advantages. Third, a complete PPI and GPR based MOEA (termed PGMOEA) is proposed to compare with three cutting-edge evolutionary feature selection algorithms to further position its search ability. In general, it is suggested from the empirical results that either PPI or GPR can significantly improve the overall performance of each integrated MOEA, while adopting both of them takes the most complementary effect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一只大嵩鼠完成签到 ,获得积分10
14秒前
17秒前
吃橘子吗完成签到 ,获得积分10
17秒前
anders完成签到 ,获得积分10
37秒前
Ricardo完成签到 ,获得积分10
39秒前
战战兢兢的失眠完成签到 ,获得积分10
52秒前
56秒前
翻翻发布了新的文献求助10
1分钟前
1分钟前
1分钟前
lyw发布了新的文献求助10
1分钟前
1分钟前
翻翻完成签到,获得积分10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
潮鸣完成签到 ,获得积分10
2分钟前
Li发布了新的文献求助10
2分钟前
2分钟前
2分钟前
巫马百招完成签到,获得积分10
2分钟前
lyw发布了新的文献求助10
2分钟前
wanci应助Fortune采纳,获得10
2分钟前
fossick2010完成签到 ,获得积分10
2分钟前
Penny完成签到,获得积分10
2分钟前
2分钟前
Penny发布了新的文献求助10
2分钟前
andrele发布了新的文献求助50
2分钟前
Fortune发布了新的文献求助10
2分钟前
颜安完成签到,获得积分20
3分钟前
张张完成签到 ,获得积分10
3分钟前
3分钟前
Fortune完成签到,获得积分10
3分钟前
Vincent发布了新的文献求助10
3分钟前
爆米花应助lzmcsp采纳,获得10
3分钟前
3分钟前
BowieHuang应助科研通管家采纳,获得10
3分钟前
李健应助科研通管家采纳,获得10
3分钟前
充电宝应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788513
求助须知:如何正确求助?哪些是违规求助? 5708718
关于积分的说明 15473598
捐赠科研通 4916529
什么是DOI,文献DOI怎么找? 2646443
邀请新用户注册赠送积分活动 1594106
关于科研通互助平台的介绍 1548507