Probe Population Based Initialization and Genetic Pool Based Reproduction for Evolutionary Bi-Objective Feature Selection

初始化 选择(遗传算法) 人工智能 人口 特征选择 进化计算 计算机科学 进化算法 遗传算法 繁殖 机器学习 模式识别(心理学) 生物 遗传学 社会学 人口学 程序设计语言
作者
Hang Xu,Bing Xue,Mengjie Zhang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/tevc.2024.3403655
摘要

Feature selection can be treated as a bi-objective optimization problem, if aimed at minimizing both classification error and number of selected features, suitable for multi-objective evolutionary algorithms (MOEAs) to solve. However, traditional MOEAs would encounter setbacks when the number of features explodes to high dimensionality, causing difficulties for searching optimal solutions in large-scale decision space. In this paper, we propose two general methods applicable to integrate with existing MOEA frameworks in addressing bi-objective feature selection, especially for high-dimensional datasets. One based on probe populations for improving initialization is called PPI, and the other based on genetic pools for improving reproduction is called GPR, both aimed at boosting the search ability of MOEAs. Tested on 20 datasets, in terms of four performance metrics (including the computational time), the experimental section can be divided into three parts. First, five state-of-the-art MOEAs are used as baseline algorithms to integrate with PPI and GPR, while the integrated versions are then compared with their own baselines. Second, the PPI method is additionally compared with three representative feature selection initialization methods to further identify its advantages. Third, a complete PPI and GPR based MOEA (termed PGMOEA) is proposed to compare with three cutting-edge evolutionary feature selection algorithms to further position its search ability. In general, it is suggested from the empirical results that either PPI or GPR can significantly improve the overall performance of each integrated MOEA, while adopting both of them takes the most complementary effect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sxd完成签到,获得积分10
1秒前
Daisy完成签到 ,获得积分10
1秒前
嘉1612完成签到,获得积分10
2秒前
2秒前
科研通AI2S应助angrymax采纳,获得10
2秒前
落尘发布了新的文献求助10
3秒前
学不懂数学应助小王采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
ROOKIE完成签到,获得积分10
4秒前
4秒前
阿胡发布了新的文献求助10
5秒前
5秒前
SYLH应助wodetaiyangLLL采纳,获得10
6秒前
loey完成签到,获得积分10
6秒前
等待的音响完成签到,获得积分10
6秒前
6秒前
孙非完成签到,获得积分10
6秒前
江小鱼在查文献完成签到,获得积分10
7秒前
静xixi完成签到,获得积分20
8秒前
就是躺完成签到 ,获得积分10
9秒前
9秒前
xcc完成签到,获得积分10
10秒前
目眩完成签到,获得积分10
10秒前
等待的花卷完成签到 ,获得积分10
11秒前
莫言发布了新的文献求助10
12秒前
潇潇完成签到,获得积分10
12秒前
YY-Bubble完成签到,获得积分10
12秒前
lulu8809发布了新的文献求助20
12秒前
lJH发布了新的文献求助10
13秒前
莫言完成签到,获得积分10
16秒前
冷艳的道天完成签到 ,获得积分10
18秒前
Angela完成签到,获得积分10
21秒前
lJH完成签到,获得积分10
21秒前
Popeye完成签到,获得积分10
23秒前
pluto应助李李采纳,获得10
26秒前
研友_7ZebY8完成签到,获得积分10
27秒前
合适怡完成签到,获得积分10
27秒前
开朗的慕儿完成签到,获得积分10
27秒前
28秒前
29秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038388
求助须知:如何正确求助?哪些是违规求助? 3576106
关于积分的说明 11374447
捐赠科研通 3305798
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029