亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Probe Population Based Initialization and Genetic Pool Based Reproduction for Evolutionary Bi-Objective Feature Selection

初始化 选择(遗传算法) 人工智能 人口 特征选择 进化计算 计算机科学 进化算法 遗传算法 繁殖 机器学习 模式识别(心理学) 生物 遗传学 人口学 社会学 程序设计语言
作者
Hang Xu,Bing Xue,Mengjie Zhang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/tevc.2024.3403655
摘要

Feature selection can be treated as a bi-objective optimization problem, if aimed at minimizing both classification error and number of selected features, suitable for multi-objective evolutionary algorithms (MOEAs) to solve. However, traditional MOEAs would encounter setbacks when the number of features explodes to high dimensionality, causing difficulties for searching optimal solutions in large-scale decision space. In this paper, we propose two general methods applicable to integrate with existing MOEA frameworks in addressing bi-objective feature selection, especially for high-dimensional datasets. One based on probe populations for improving initialization is called PPI, and the other based on genetic pools for improving reproduction is called GPR, both aimed at boosting the search ability of MOEAs. Tested on 20 datasets, in terms of four performance metrics (including the computational time), the experimental section can be divided into three parts. First, five state-of-the-art MOEAs are used as baseline algorithms to integrate with PPI and GPR, while the integrated versions are then compared with their own baselines. Second, the PPI method is additionally compared with three representative feature selection initialization methods to further identify its advantages. Third, a complete PPI and GPR based MOEA (termed PGMOEA) is proposed to compare with three cutting-edge evolutionary feature selection algorithms to further position its search ability. In general, it is suggested from the empirical results that either PPI or GPR can significantly improve the overall performance of each integrated MOEA, while adopting both of them takes the most complementary effect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhen完成签到,获得积分10
18秒前
哈尔滨完成签到,获得积分20
20秒前
29秒前
米奇妙妙屋完成签到,获得积分10
1分钟前
tylscxf完成签到,获得积分10
1分钟前
YifanWang完成签到,获得积分0
1分钟前
量子星尘发布了新的文献求助30
1分钟前
1分钟前
启震发布了新的文献求助10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
www完成签到,获得积分20
2分钟前
2分钟前
风车术完成签到,获得积分20
2分钟前
2分钟前
风车术发布了新的文献求助10
2分钟前
shinian发布了新的文献求助10
2分钟前
2分钟前
小岩完成签到 ,获得积分10
2分钟前
wanci应助风车术采纳,获得10
2分钟前
2分钟前
为神指路发布了新的文献求助30
2分钟前
2分钟前
2分钟前
为神指路完成签到,获得积分20
2分钟前
2分钟前
2分钟前
33完成签到,获得积分0
3分钟前
共享精神应助科研通管家采纳,获得20
3分钟前
量子星尘发布了新的文献求助10
3分钟前
行走完成签到,获得积分10
4分钟前
4分钟前
4分钟前
姚老表完成签到,获得积分10
4分钟前
mashibeo完成签到,获得积分10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
脑洞疼应助zhiweiyan采纳,获得10
4分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976649
求助须知:如何正确求助?哪些是违规求助? 3520756
关于积分的说明 11204729
捐赠科研通 3257502
什么是DOI,文献DOI怎么找? 1798733
邀请新用户注册赠送积分活动 877897
科研通“疑难数据库(出版商)”最低求助积分说明 806629