A Simulation Tool for V2G Enabled Demand Response Based on Model Predictive Control

模型预测控制 需求响应 计算机科学 控制(管理) 工程类 人工智能 电气工程
作者
Cesar Diaz-Londono,Stavros Orfanoudakis,Pedro P. Vergara,Peter Pálenský,Fredy Ruíz,Giambattista Gruosso
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2405.11963
摘要

Integrating electric vehicles (EVs) into the power grid can revolutionize energy management strategies, offering both challenges and opportunities for creating a more sustainable and resilient grid. In this context, model predictive control (MPC) emerges as a powerful tool for addressing the complexities of Grid-to-vehicle (G2V) and vehicle-to-grid (V2G) enabled demand response management. By leveraging advanced optimization techniques, MPC algorithms can anticipate future grid conditions and dynamically adjust EV charging and discharging schedules to balance supply and demand while minimizing operational costs and maximizing flexibility. However, no standard tools exist to evaluate novel energy management strategies based on MPC approaches. Our research focuses on harnessing the potential of MPC in G2V and V2G applications, by providing a simulation tool that allows to maximize EV flexibility and support demand response initiatives while mitigating the impact on EV battery health. In this paper, we propose an open-source MPC controller for G2V and V2G-enabled demand response management. The proposed approach is capable of tackling the uncertainties inherent in demand response operations. Through extensive simulation and analysis, we demonstrate the efficacy of our approach in maximizing the benefits of G2V and V2G while assessing the impact on the longevity and reliability of EV batteries. Specifically, our controller enables Charge Point Operators (CPOs) to optimize EV charging and discharging schedules in real-time, taking into account fluctuating energy prices, grid constraints, and EV user preferences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玛卡巴卡发布了新的文献求助10
1秒前
2秒前
哈哈哈发布了新的文献求助10
2秒前
elina发布了新的文献求助10
2秒前
xiaopei发布了新的文献求助10
3秒前
4秒前
Dotson完成签到,获得积分10
4秒前
简单的发夹完成签到,获得积分10
4秒前
Ava应助舒适的淇采纳,获得10
5秒前
干净的烧鹅完成签到,获得积分10
6秒前
时笙完成签到 ,获得积分10
8秒前
9秒前
易千妤完成签到 ,获得积分10
9秒前
不吃胡萝卜完成签到 ,获得积分10
9秒前
烟花应助LX采纳,获得10
14秒前
14秒前
wxr发布了新的文献求助10
14秒前
玛卡巴卡完成签到,获得积分10
15秒前
迟暮完成签到 ,获得积分10
15秒前
lin完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
18秒前
CodeCraft应助xiaopei采纳,获得10
18秒前
木头发布了新的文献求助50
19秒前
elina完成签到,获得积分20
21秒前
22秒前
木头人呐完成签到 ,获得积分10
23秒前
xiaopei完成签到,获得积分10
26秒前
26秒前
27秒前
哈哈哈完成签到,获得积分20
29秒前
30秒前
铅笔995完成签到,获得积分10
31秒前
幽默的乐双完成签到,获得积分10
31秒前
风中的金鱼关注了科研通微信公众号
32秒前
狗子完成签到 ,获得积分10
32秒前
gzupppp完成签到 ,获得积分10
39秒前
Akim应助谨慎的咖啡豆采纳,获得10
39秒前
sq完成签到,获得积分20
41秒前
明杰完成签到,获得积分10
41秒前
42秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958051
求助须知:如何正确求助?哪些是违规求助? 3504213
关于积分的说明 11117431
捐赠科研通 3235582
什么是DOI,文献DOI怎么找? 1788318
邀请新用户注册赠送积分活动 871204
科研通“疑难数据库(出版商)”最低求助积分说明 802511