A Simulation Tool for V2G Enabled Demand Response Based on Model Predictive Control

模型预测控制 需求响应 计算机科学 控制(管理) 工程类 人工智能 电气工程
作者
Cesar Diaz-Londono,Stavros Orfanoudakis,Pedro P. Vergara,Peter Pálenský,Fredy Ruíz,Giambattista Gruosso
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2405.11963
摘要

Integrating electric vehicles (EVs) into the power grid can revolutionize energy management strategies, offering both challenges and opportunities for creating a more sustainable and resilient grid. In this context, model predictive control (MPC) emerges as a powerful tool for addressing the complexities of Grid-to-vehicle (G2V) and vehicle-to-grid (V2G) enabled demand response management. By leveraging advanced optimization techniques, MPC algorithms can anticipate future grid conditions and dynamically adjust EV charging and discharging schedules to balance supply and demand while minimizing operational costs and maximizing flexibility. However, no standard tools exist to evaluate novel energy management strategies based on MPC approaches. Our research focuses on harnessing the potential of MPC in G2V and V2G applications, by providing a simulation tool that allows to maximize EV flexibility and support demand response initiatives while mitigating the impact on EV battery health. In this paper, we propose an open-source MPC controller for G2V and V2G-enabled demand response management. The proposed approach is capable of tackling the uncertainties inherent in demand response operations. Through extensive simulation and analysis, we demonstrate the efficacy of our approach in maximizing the benefits of G2V and V2G while assessing the impact on the longevity and reliability of EV batteries. Specifically, our controller enables Charge Point Operators (CPOs) to optimize EV charging and discharging schedules in real-time, taking into account fluctuating energy prices, grid constraints, and EV user preferences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ly666发布了新的文献求助10
2秒前
2秒前
3秒前
林以诺完成签到 ,获得积分10
3秒前
Cici完成签到 ,获得积分10
3秒前
su发布了新的文献求助10
3秒前
害羞的夏柳完成签到,获得积分10
4秒前
Ray1028完成签到,获得积分10
4秒前
6秒前
6秒前
7秒前
8秒前
8秒前
木非发布了新的文献求助10
8秒前
葛根完成签到,获得积分10
9秒前
执着绿草发布了新的文献求助10
9秒前
ice发布了新的文献求助10
11秒前
11秒前
Lisa田发布了新的文献求助20
12秒前
背后尔容完成签到,获得积分10
13秒前
李健的小迷弟应助boz采纳,获得10
14秒前
15秒前
深情安青应助su采纳,获得10
16秒前
无花果应助西门子云采纳,获得10
16秒前
浮游应助称心唯雪采纳,获得10
17秒前
昔诺完成签到,获得积分10
18秒前
yuyiyi发布了新的文献求助10
18秒前
会会完成签到 ,获得积分10
19秒前
llllliu发布了新的文献求助10
20秒前
20秒前
20秒前
白桦完成签到,获得积分10
20秒前
zhw发布了新的文献求助10
21秒前
李爱国应助Tao采纳,获得10
22秒前
22秒前
清新的宛丝完成签到,获得积分10
22秒前
Ffffa发布了新的文献求助10
23秒前
liamddd完成签到 ,获得积分10
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299311
求助须知:如何正确求助?哪些是违规求助? 4447519
关于积分的说明 13843004
捐赠科研通 4333113
什么是DOI,文献DOI怎么找? 2378534
邀请新用户注册赠送积分活动 1373842
关于科研通互助平台的介绍 1339360