A Simulation Tool for V2G Enabled Demand Response Based on Model Predictive Control

模型预测控制 需求响应 计算机科学 控制(管理) 工程类 人工智能 电气工程
作者
Cesar Diaz-Londono,Stavros Orfanoudakis,Pedro P. Vergara,Peter Pálenský,Fredy Ruíz,Giambattista Gruosso
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2405.11963
摘要

Integrating electric vehicles (EVs) into the power grid can revolutionize energy management strategies, offering both challenges and opportunities for creating a more sustainable and resilient grid. In this context, model predictive control (MPC) emerges as a powerful tool for addressing the complexities of Grid-to-vehicle (G2V) and vehicle-to-grid (V2G) enabled demand response management. By leveraging advanced optimization techniques, MPC algorithms can anticipate future grid conditions and dynamically adjust EV charging and discharging schedules to balance supply and demand while minimizing operational costs and maximizing flexibility. However, no standard tools exist to evaluate novel energy management strategies based on MPC approaches. Our research focuses on harnessing the potential of MPC in G2V and V2G applications, by providing a simulation tool that allows to maximize EV flexibility and support demand response initiatives while mitigating the impact on EV battery health. In this paper, we propose an open-source MPC controller for G2V and V2G-enabled demand response management. The proposed approach is capable of tackling the uncertainties inherent in demand response operations. Through extensive simulation and analysis, we demonstrate the efficacy of our approach in maximizing the benefits of G2V and V2G while assessing the impact on the longevity and reliability of EV batteries. Specifically, our controller enables Charge Point Operators (CPOs) to optimize EV charging and discharging schedules in real-time, taking into account fluctuating energy prices, grid constraints, and EV user preferences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迅速傲晴完成签到,获得积分10
刚刚
1秒前
chinaproteome发布了新的文献求助10
2秒前
3秒前
汉堡包应助焉知非褔采纳,获得10
3秒前
4秒前
4秒前
大樗完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
5秒前
浪子应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
浪子应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得10
5秒前
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
BowieHuang应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得30
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
小马甲应助科研通管家采纳,获得10
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
Jasper应助默默冬瓜采纳,获得10
6秒前
7秒前
CNS之神完成签到 ,获得积分10
8秒前
高大的清涟完成签到 ,获得积分10
8秒前
123完成签到,获得积分10
9秒前
9秒前
Lucas应助komorebi采纳,获得10
9秒前
9秒前
大樗发布了新的文献求助20
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736699
求助须知:如何正确求助?哪些是违规求助? 5367371
关于积分的说明 15333576
捐赠科研通 4880461
什么是DOI,文献DOI怎么找? 2622875
邀请新用户注册赠送积分活动 1571758
关于科研通互助平台的介绍 1528582