A Simulation Tool for V2G Enabled Demand Response Based on Model Predictive Control

模型预测控制 需求响应 计算机科学 控制(管理) 工程类 人工智能 电气工程
作者
Cesar Diaz-Londono,Stavros Orfanoudakis,Pedro P. Vergara,Peter Pálenský,Fredy Ruíz,Giambattista Gruosso
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2405.11963
摘要

Integrating electric vehicles (EVs) into the power grid can revolutionize energy management strategies, offering both challenges and opportunities for creating a more sustainable and resilient grid. In this context, model predictive control (MPC) emerges as a powerful tool for addressing the complexities of Grid-to-vehicle (G2V) and vehicle-to-grid (V2G) enabled demand response management. By leveraging advanced optimization techniques, MPC algorithms can anticipate future grid conditions and dynamically adjust EV charging and discharging schedules to balance supply and demand while minimizing operational costs and maximizing flexibility. However, no standard tools exist to evaluate novel energy management strategies based on MPC approaches. Our research focuses on harnessing the potential of MPC in G2V and V2G applications, by providing a simulation tool that allows to maximize EV flexibility and support demand response initiatives while mitigating the impact on EV battery health. In this paper, we propose an open-source MPC controller for G2V and V2G-enabled demand response management. The proposed approach is capable of tackling the uncertainties inherent in demand response operations. Through extensive simulation and analysis, we demonstrate the efficacy of our approach in maximizing the benefits of G2V and V2G while assessing the impact on the longevity and reliability of EV batteries. Specifically, our controller enables Charge Point Operators (CPOs) to optimize EV charging and discharging schedules in real-time, taking into account fluctuating energy prices, grid constraints, and EV user preferences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI2S应助完美的海秋采纳,获得10
1秒前
陌上完成签到,获得积分20
4秒前
蜡笔小凡完成签到,获得积分10
5秒前
6秒前
6秒前
Three完成签到,获得积分10
6秒前
6秒前
一口饺子完成签到,获得积分10
7秒前
戈惜完成签到 ,获得积分10
8秒前
陌上发布了新的文献求助20
8秒前
安an发布了新的文献求助10
9秒前
9秒前
5小0发布了新的文献求助10
10秒前
10秒前
书生应助dddd采纳,获得10
10秒前
王灿灿应助安小野采纳,获得10
11秒前
flysky120完成签到,获得积分10
11秒前
11秒前
VDC应助WURE采纳,获得80
16秒前
17秒前
18秒前
wzx完成签到,获得积分10
18秒前
BAi发布了新的文献求助10
18秒前
脑洞疼应助薛定谔的猫采纳,获得10
19秒前
云舒发布了新的文献求助10
21秒前
22秒前
朴素的梦岚完成签到,获得积分10
22秒前
阚曦完成签到,获得积分10
22秒前
华仔应助微笑的小虾米采纳,获得10
24秒前
26秒前
难两全完成签到,获得积分10
26秒前
ljh626关注了科研通微信公众号
27秒前
用户名不含敏感词完成签到,获得积分10
28秒前
华仔应助sun采纳,获得10
28秒前
29秒前
科研通AI2S应助senyusing采纳,获得10
29秒前
youchgg完成签到,获得积分10
30秒前
忆往昔发布了新的文献求助10
30秒前
31秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3243751
求助须知:如何正确求助?哪些是违规求助? 2887588
关于积分的说明 8249165
捐赠科研通 2556263
什么是DOI,文献DOI怎么找? 1384394
科研通“疑难数据库(出版商)”最低求助积分说明 649847
邀请新用户注册赠送积分活动 625794