Analytical Robust Design Optimization for Hybrid Design Variables: An Active-learning Methodology Based on Polynomial Chaos Kriging

克里金 多项式混沌 混沌(操作系统) 数学优化 多项式的 计算机科学 数学 机器学习 统计 蒙特卡罗方法 数学分析 计算机安全
作者
Chaolin Song,Abdollah Shafieezadeh,Rucheng Xiao,Bin Sun
出处
期刊:Reliability Engineering & System Safety [Elsevier BV]
卷期号:250: 110286-110286
标识
DOI:10.1016/j.ress.2024.110286
摘要

In robust design optimization, statistical moments of performance are widely adopted in formulating robustness metrics. To address the high computational costs stemming from the many-query nature of such optimizations with respect to robustness metrics, analytical formulas of the statistical moments have been developed based on surrogate models. However, existing methods consider random variables as the sole model input, which excludes, from the application scope, problems that also involve deterministic design variables. To remedy this issue, this paper proposes a new Polynomial Chaos Kriging-based methodology for efficient and accurate analytical robust design optimization. The analytical solutions for the statistical moments of performance are developed considering that the Polynomial Chaos Kriging model is established in the augmented space of the deterministic design and random variables. This is achieved by systematically decoupling associations with deterministic input from random input, providing effective solutions even when the orthonormality of the basis function is not applicable in the augmented space. This work also presents an active-learning framework enabling seamless implementation of various numerical optimization methods. Several numerical examples and a practical application illustrate the performance and superiority of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助贺光萌采纳,获得10
刚刚
orixero应助嘚嘚嘚采纳,获得10
刚刚
1秒前
因一完成签到,获得积分10
1秒前
3秒前
ding应助鳗鱼煜祺采纳,获得10
3秒前
旺仔发布了新的文献求助10
4秒前
MTXing发布了新的文献求助10
5秒前
梅杰发布了新的文献求助10
5秒前
5秒前
7秒前
陈陈旭关注了科研通微信公众号
7秒前
ding应助Moxley采纳,获得10
7秒前
温柔寄柔完成签到,获得积分10
7秒前
浮游应助wangli采纳,获得10
8秒前
8秒前
8秒前
9秒前
10秒前
we1发布了新的文献求助10
11秒前
coini发布了新的文献求助10
11秒前
木木木熙发布了新的文献求助10
11秒前
Eve丶Paopaoxuan应助宿帅帅采纳,获得10
11秒前
999完成签到,获得积分10
13秒前
勤奋旭尧发布了新的文献求助10
13秒前
zhouxing3发布了新的文献求助10
13秒前
郭斌艳发布了新的文献求助10
14秒前
15秒前
端庄的皮带完成签到,获得积分10
15秒前
yy完成签到,获得积分10
15秒前
赘婿应助困困包采纳,获得30
16秒前
梅杰完成签到,获得积分20
16秒前
崔昕雨完成签到,获得积分10
17秒前
17秒前
17秒前
17秒前
17秒前
we1完成签到,获得积分20
18秒前
18秒前
SciGPT应助nan采纳,获得30
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4867230
求助须知:如何正确求助?哪些是违规求助? 4159304
关于积分的说明 12897322
捐赠科研通 3913388
什么是DOI,文献DOI怎么找? 2149227
邀请新用户注册赠送积分活动 1167744
关于科研通互助平台的介绍 1070184