Analytical Robust Design Optimization for Hybrid Design Variables: An Active-learning Methodology Based on Polynomial Chaos Kriging

克里金 多项式混沌 混沌(操作系统) 数学优化 多项式的 计算机科学 数学 机器学习 统计 蒙特卡罗方法 计算机安全 数学分析
作者
Chaolin Song,Abdollah Shafieezadeh,Rucheng Xiao,Bin Sun
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:250: 110286-110286
标识
DOI:10.1016/j.ress.2024.110286
摘要

In robust design optimization, statistical moments of performance are widely adopted in formulating robustness metrics. To address the high computational costs stemming from the many-query nature of such optimizations with respect to robustness metrics, analytical formulas of the statistical moments have been developed based on surrogate models. However, existing methods consider random variables as the sole model input, which excludes, from the application scope, problems that also involve deterministic design variables. To remedy this issue, this paper proposes a new Polynomial Chaos Kriging-based methodology for efficient and accurate analytical robust design optimization. The analytical solutions for the statistical moments of performance are developed considering that the Polynomial Chaos Kriging model is established in the augmented space of the deterministic design and random variables. This is achieved by systematically decoupling associations with deterministic input from random input, providing effective solutions even when the orthonormality of the basis function is not applicable in the augmented space. This work also presents an active-learning framework enabling seamless implementation of various numerical optimization methods. Several numerical examples and a practical application illustrate the performance and superiority of the proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
领导范儿应助酷炫贞采纳,获得10
1秒前
芊芊墨完成签到,获得积分10
1秒前
NTw_wzw发布了新的文献求助10
2秒前
鱼鱼子发布了新的文献求助10
2秒前
江上发布了新的文献求助10
4秒前
鸡毛完成签到,获得积分10
4秒前
ying完成签到,获得积分10
4秒前
4秒前
5秒前
大个应助甜甜亦丝采纳,获得10
5秒前
ANG发布了新的文献求助10
6秒前
杜胤江关注了科研通微信公众号
7秒前
HH发布了新的文献求助10
7秒前
8秒前
9秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
丘比特应助从容曼文采纳,获得10
11秒前
汉堡包应助年轻的如霜采纳,获得10
11秒前
12秒前
12秒前
12秒前
sadascaqwqw发布了新的文献求助10
13秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
深情安青应助科研通管家采纳,获得10
15秒前
Ava应助科研通管家采纳,获得10
15秒前
15秒前
顾矜应助科研通管家采纳,获得10
15秒前
15秒前
斯文败类应助科研通管家采纳,获得10
15秒前
丘比特应助科研通管家采纳,获得10
15秒前
yaohuici完成签到,获得积分20
15秒前
搜集达人应助科研通管家采纳,获得10
15秒前
16秒前
16秒前
充电宝应助科研通管家采纳,获得20
16秒前
眠羊发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5720320
求助须知:如何正确求助?哪些是违规求助? 5259567
关于积分的说明 15290807
捐赠科研通 4869734
什么是DOI,文献DOI怎么找? 2614988
邀请新用户注册赠送积分活动 1564964
关于科研通互助平台的介绍 1522137