Analytical Robust Design Optimization for Hybrid Design Variables: An Active-learning Methodology Based on Polynomial Chaos Kriging

克里金 多项式混沌 混沌(操作系统) 数学优化 多项式的 计算机科学 数学 机器学习 统计 蒙特卡罗方法 数学分析 计算机安全
作者
Chaolin Song,Abdollah Shafieezadeh,Rucheng Xiao,Bin Sun
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:250: 110286-110286
标识
DOI:10.1016/j.ress.2024.110286
摘要

In robust design optimization, statistical moments of performance are widely adopted in formulating robustness metrics. To address the high computational costs stemming from the many-query nature of such optimizations with respect to robustness metrics, analytical formulas of the statistical moments have been developed based on surrogate models. However, existing methods consider random variables as the sole model input, which excludes, from the application scope, problems that also involve deterministic design variables. To remedy this issue, this paper proposes a new Polynomial Chaos Kriging-based methodology for efficient and accurate analytical robust design optimization. The analytical solutions for the statistical moments of performance are developed considering that the Polynomial Chaos Kriging model is established in the augmented space of the deterministic design and random variables. This is achieved by systematically decoupling associations with deterministic input from random input, providing effective solutions even when the orthonormality of the basis function is not applicable in the augmented space. This work also presents an active-learning framework enabling seamless implementation of various numerical optimization methods. Several numerical examples and a practical application illustrate the performance and superiority of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
starofjlu应助jxp采纳,获得30
2秒前
无情广缘发布了新的文献求助20
2秒前
hsialy完成签到,获得积分10
4秒前
wanci应助闫132采纳,获得10
4秒前
领导范儿应助cloud采纳,获得30
4秒前
5秒前
lym完成签到,获得积分10
6秒前
7秒前
AhhHuang完成签到,获得积分10
8秒前
9秒前
lym发布了新的文献求助10
10秒前
无限黑夜发布了新的文献求助10
11秒前
11秒前
12秒前
14秒前
史育川完成签到,获得积分10
15秒前
悦耳代真发布了新的文献求助10
16秒前
gaochi完成签到,获得积分10
16秒前
迷你的煎饼完成签到,获得积分10
17秒前
科研小白白完成签到 ,获得积分10
17秒前
闫132发布了新的文献求助10
17秒前
聪慧的橘子完成签到,获得积分10
17秒前
斯文败类应助AhhHuang采纳,获得10
19秒前
姜宇完成签到,获得积分10
19秒前
19秒前
20秒前
20秒前
22秒前
lris发布了新的文献求助10
22秒前
22秒前
22秒前
ding应助Susie采纳,获得10
22秒前
23秒前
科研通AI2S应助junyang采纳,获得10
23秒前
星辰大海应助xxxlglm采纳,获得10
24秒前
在水一方应助哈哈悦采纳,获得10
24秒前
PDIF-CN2完成签到,获得积分10
25秒前
姜宇发布了新的文献求助10
25秒前
25秒前
清晾油完成签到,获得积分10
27秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149194
求助须知:如何正确求助?哪些是违规求助? 2800255
关于积分的说明 7839329
捐赠科研通 2457827
什么是DOI,文献DOI怎么找? 1308138
科研通“疑难数据库(出版商)”最低求助积分说明 628428
版权声明 601706