Combining machine learning and metal–organic frameworks research: Novel modeling, performance prediction, and materials discovery

化学 金属有机骨架 纳米技术 有机化学 吸附 材料科学
作者
Chunhua Li,Luqian Bao,Yixin Ji,Zhehang Tian,Mengyao Cui,Yubo Shi,Zhilei Zhao,Xianyou Wang
出处
期刊:Coordination Chemistry Reviews [Elsevier]
卷期号:514: 215888-215888 被引量:5
标识
DOI:10.1016/j.ccr.2024.215888
摘要

Machine learning (ML) is the science of making computers learn and behave like humans, autonomously improving their learning by providing them with data and information through observations and real-world interactions. ML methods have significantly accelerated the progress of materials science research. Researchers can use ML frameworks to construct materials research models and design platforms to analyze and predict enormous data resources on materials. Metal-organic frameworks (MOFs), a rapidly developing coordination polymer in the last two decades, have become the most competitive candidate among thousands of porous materials with the application of numerous ML methods and models that have been successfully developed. This review offers an overview of how ML methods may be well-integrated with studying MOFs. It starts with a brief background on the concept and application of ML, points out the importance of various types of descriptors for ML modeling, and introduces several novel algorithms and models using ML in recent years. Then, we elaborate on the current research status of ML methods in MOFs performance prediction and materials discovery. At last, potential challenges are pointed out, and an outlook is given regarding the basic situation of ML-based MOF research. As various functionalized MOFs continue to be developed and applied in specific directions, ML will bring its advantages to the forefront in designing and discovering novel MOFs. Therefore, this review intends to provide readers with fundamental perspectives on the broad range of applications where ML is combined with MOFs research and expects to help enhance their study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
霖霖向前冲完成签到 ,获得积分10
1秒前
3秒前
5秒前
小马甲应助坚强擎汉采纳,获得10
6秒前
李健应助甜蜜的世德采纳,获得10
6秒前
7秒前
DQY发布了新的文献求助10
9秒前
11秒前
卡司发布了新的文献求助10
12秒前
Yilam完成签到,获得积分10
12秒前
酷波er应助Yo采纳,获得10
15秒前
子车茗应助DQY采纳,获得10
15秒前
15秒前
菠萝炒蛋加饭完成签到 ,获得积分10
16秒前
俏皮鸵鸟发布了新的文献求助10
16秒前
17秒前
nt完成签到,获得积分10
17秒前
昏睡的绿海完成签到,获得积分10
18秒前
烟花应助卡卡西采纳,获得10
19秒前
20秒前
20秒前
22秒前
开心完成签到 ,获得积分10
23秒前
24秒前
25秒前
楚寅完成签到 ,获得积分10
35秒前
36秒前
36秒前
tooy完成签到 ,获得积分10
38秒前
儒雅八宝粥完成签到 ,获得积分10
39秒前
39秒前
SciGPT应助Nana采纳,获得10
41秒前
风中少年发布了新的文献求助10
42秒前
42秒前
啊哈哈哈哈完成签到,获得积分10
42秒前
LiaoPiggg发布了新的文献求助10
42秒前
43秒前
43秒前
求助完成签到 ,获得积分10
44秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299860
求助须知:如何正确求助?哪些是违规求助? 2934706
关于积分的说明 8470318
捐赠科研通 2608238
什么是DOI,文献DOI怎么找? 1424137
科研通“疑难数据库(出版商)”最低求助积分说明 661847
邀请新用户注册赠送积分活动 645578