Combining machine learning and metal–organic frameworks research: Novel modeling, performance prediction, and materials discovery

化学 金属有机骨架 纳米技术 有机化学 吸附 材料科学
作者
Chunhua Li,Luqian Bao,Yixin Ji,Zhehang Tian,Mengyao Cui,Yubo Shi,Zhilei Zhao,Xianyou Wang
出处
期刊:Coordination Chemistry Reviews [Elsevier]
卷期号:514: 215888-215888 被引量:2
标识
DOI:10.1016/j.ccr.2024.215888
摘要

Machine learning (ML) is the science of making computers learn and behave like humans, autonomously improving their learning by providing them with data and information through observations and real-world interactions. ML methods have significantly accelerated the progress of materials science research. Researchers can use ML frameworks to construct materials research models and design platforms to analyze and predict enormous data resources on materials. Metal-organic frameworks (MOFs), a rapidly developing coordination polymer in the last two decades, have become the most competitive candidate among thousands of porous materials with the application of numerous ML methods and models that have been successfully developed. This review offers an overview of how ML methods may be well-integrated with studying MOFs. It starts with a brief background on the concept and application of ML, points out the importance of various types of descriptors for ML modeling, and introduces several novel algorithms and models using ML in recent years. Then, we elaborate on the current research status of ML methods in MOFs performance prediction and materials discovery. At last, potential challenges are pointed out, and an outlook is given regarding the basic situation of ML-based MOF research. As various functionalized MOFs continue to be developed and applied in specific directions, ML will bring its advantages to the forefront in designing and discovering novel MOFs. Therefore, this review intends to provide readers with fundamental perspectives on the broad range of applications where ML is combined with MOFs research and expects to help enhance their study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小学生的练习簿完成签到,获得积分10
刚刚
脑洞疼应助小谷采纳,获得10
刚刚
研友_8DWkVZ发布了新的文献求助20
刚刚
Hello应助常常在努力采纳,获得10
1秒前
hyf发布了新的文献求助10
1秒前
CodeCraft应助123采纳,获得10
3秒前
孤星完成签到,获得积分20
3秒前
character577完成签到,获得积分10
5秒前
旺德福完成签到 ,获得积分10
5秒前
5秒前
天天快乐应助超级白昼采纳,获得10
5秒前
芜湖哈哈哈完成签到,获得积分20
6秒前
小二郎应助crayon采纳,获得30
6秒前
JamesPei应助fanfan采纳,获得10
10秒前
固的曼完成签到,获得积分10
10秒前
12秒前
Duckseid发布了新的文献求助10
13秒前
15秒前
16秒前
17秒前
抱住仙人球应助dacongming采纳,获得10
17秒前
知性的钢笔完成签到,获得积分10
18秒前
36456657应助kk采纳,获得10
20秒前
我是老大应助妮儿采纳,获得10
20秒前
鞑靼发布了新的文献求助10
21秒前
GengYing发布了新的文献求助10
21秒前
旺德福关注了科研通微信公众号
21秒前
24发布了新的文献求助20
23秒前
fanfan发布了新的文献求助10
23秒前
哈哈恬发布了新的文献求助10
24秒前
25秒前
芜湖哈哈哈关注了科研通微信公众号
25秒前
27秒前
28秒前
情怀应助橙子橙子橙子采纳,获得10
29秒前
SciGPT应助飞云采纳,获得10
31秒前
33秒前
妮儿发布了新的文献求助10
33秒前
毛豆爸爸应助kk采纳,获得20
34秒前
张航发布了新的文献求助10
34秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
氟盐冷却高温堆非能动余热排出性能及安全分析研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3051374
求助须知:如何正确求助?哪些是违规求助? 2708662
关于积分的说明 7413751
捐赠科研通 2352869
什么是DOI,文献DOI怎么找? 1245378
科研通“疑难数据库(出版商)”最低求助积分说明 605633
版权声明 595829