已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The association between immune cells and breast cancer: insights from Mendelian randomization and meta‐analysis

医学 孟德尔随机化 乳腺癌 肿瘤微环境 免疫系统 肿瘤科 提吉特 免疫疗法 癌症 内科学 免疫学 基因 基因型 遗传变异 生物 生物化学
作者
Wanxian Xu,Tao Zhang,Zhitao Zhu,Yue Yang
出处
期刊:International Journal of Surgery [Elsevier]
卷期号:111 (1): 230-241 被引量:28
标识
DOI:10.1097/js9.0000000000001840
摘要

Background: Breast cancer (BC) is the most common cancer among women worldwide, with 2.3 million new cases and 685 000 deaths annually. It has the highest incidence in North America, Europe, and Australia and lower rates in parts of Asia and Africa. Risk factors include age, family history, hormone replacement therapy, obesity, alcohol consumption, and lack of physical activity. BRCA1 and BRCA2 gene mutations significantly increase the risk. The 5-year survival rate is over 90% in developed countries but lower in developing ones. Early screening and diagnosis, using mammography and MRI, are crucial for reducing mortality. In recent years, significant progress has been made in studying BC immunophenotyping, particularly in multicolor flow cytometry, molecular imaging techniques, and tumor microenvironment analysis. These technologies improve diagnosis, classification, and detection of minimal residual disease. Novel immunotherapies targeting the tumor microenvironment, like CAR-T cell therapy, show high efficiency and fewer side effects. High levels of tumor-infiltrating lymphocytes correlate with better prognosis, while immune checkpoint molecules (PD-1, PD-L1) help cancer cells evade the immune system. Tumor-associated macrophages promote invasion and metastasis. Blocking molecules like CTLA-4, LAG-3, and TIM-3 enhance antitumor responses, and cytokines like IL-10 and TGF-β aid tumor growth and immune evasion. Mendelian randomization (MR) studies use genetic variants to reduce confounding bias and avoid reverse causation, providing robust causal inferences about immune cell phenotypes and BC. This approach supports the development of precision medicine and personalized treatment strategies for BC. Methods: This study aims to conduct MR analysis on 731 immune cell phenotypes with BC in the BCAC and Finngen R10 datasets, followed by a meta-analysis of the primary results using the inverse-variance weighted (IVW) method and multiple corrections for the significance P -values from the meta-analysis. Specifically, the study is divided into three parts: First, data on 731 immune cell phenotypes and BC are obtained and preprocessed from the GWAS Catalog and Open GWAS (BCAC) and the Finngen R10 databases. Second, MR analysis is performed on the 731 immune cell phenotypes with BC data from the BCAC and Finngen R10 databases, followed by a meta-analysis of the primary results using the IVW method, with multiple corrections for the significance P -values from the meta-analysis. Finally, the positively identified immune cell phenotypes are used as outcome variables, and BC as the exposure variable for reverse MR validation. Results: The study found that two immune phenotypes exhibited strong significant associations in MR analysis combined with meta-analysis and multiple corrections. For the immune phenotype CD3 on CD28+ CD4-CD8- T cells, the results were as follows: in the BCAC dataset, the IVW result was odds ratio (OR) = 0.942 (95% CI: 0.915–0.970, P =6.76×10 -5 ), β =−0.059; MR Egger result was β =−0.095; and the weighted median result was β =−0.060. In the Finngen R10 dataset, the IVW result was OR=0.956 (95% CI: 0.907–1.01, P =0.092), β =−0.045; MR Egger result was β =−0.070; and weighted median result was β =−0.035. The β values were consistent in direction across all three MR methods in both datasets. The meta-analysis of the IVW results from both datasets showed OR=0.945 (95% CI: 0.922–0.970, P =1.70×10 -5 ). After Bonferroni correction, the significant P- value was P =0.01, confirming the immune phenotype as a protective factor against BC. For the immune phenotype HLA DR on CD33- HLA DR+, the results were as follows: in the BCAC dataset, the IVW result was OR=0.977 (95% CI: 0.964–0.990, P =7.64×10 -4 ), β =−0.023; MR Egger result was β =−0.016; and the weighted median result was β =−0.019. In the Finngen R10 dataset, the IVW result was OR=0.960 (95% CI: 0.938–0.983, P =6.51×10 -4 ), β =−0.041; MR Egger result was β =−0.064; and weighted median result was β =−0.058. The β values were consistent in direction across all three MR methods in both datasets. The meta-analysis of the IVW results from both datasets showed OR=0.973 (95% CI: 0.961–0.984, P =3.80×10 -6 ). After Bonferroni correction, the significant P -value was P =0.003, confirming this immune phenotype as a protective factor against BC. When the immune cell phenotypes CD3 on CD28+ CD4-CD8- T cells and HLA DR on CD33- HLA DR+ were used as outcomes and BC was used as exposure, the data processing and analysis procedures were the same. The MR analysis results are as follows: data from the FinnGen database regarding the effect of positive immune phenotypes on malignant neoplasm of the breast indicated a β coefficient of −0.011, OR = 0.99 (95% CI: −0.117–0.096, P =0.846); data from the BCAC database regarding favorable immune phenotypes for BC demonstrated a β coefficient of −0.052, OR=0.095 (95% CI: −0.144–0.040, P =0.266). The results suggest insufficient evidence in both databases to indicate that BC inversely affects these two immune cell phenotypes. Conclusions: Evidence suggests that the immune cell phenotypes CD3 on CD28+ CD4-CD8- T cells and HLA DR on CD33- HLA DR+ protect against BC. This protective effect may be achieved through various mechanisms, including enhancing immune surveillance to recognize and eliminate tumor cells; secreting cytokines to inhibit tumor cell proliferation and growth directly; triggering apoptotic pathways in tumor cells to reduce their number; modulating the tumor microenvironment to make it unfavorable for tumor growth and spread; activating other immune cells to boost the overall immune response; and inhibiting angiogenesis to reduce the tumor’s nutrient supply. These mechanisms work together to help protect BC patients and slow disease progression. Both immune cell phenotypes are protective factors for BC patients and can be targeted to enhance their function and related pathways for BC treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rainbow发布了新的文献求助20
1秒前
核桃应助A亮采纳,获得20
2秒前
外向的易蓉完成签到 ,获得积分10
4秒前
火翟丰丰山心完成签到,获得积分10
4秒前
充电宝应助热情的板栗采纳,获得10
6秒前
yiyi完成签到 ,获得积分10
6秒前
北觅完成签到 ,获得积分10
6秒前
七号在野闪闪完成签到 ,获得积分10
11秒前
Joker发布了新的文献求助10
11秒前
Zyj完成签到,获得积分20
12秒前
虞美人完成签到 ,获得积分10
14秒前
小小科学家完成签到 ,获得积分10
15秒前
aub完成签到 ,获得积分10
15秒前
Zyj发布了新的文献求助10
15秒前
fwda1000完成签到 ,获得积分10
17秒前
心之所向完成签到 ,获得积分10
20秒前
逍遥小书生完成签到 ,获得积分10
21秒前
xiaoming完成签到 ,获得积分10
21秒前
烟花应助比奇堡采纳,获得10
22秒前
23秒前
嗯嗯完成签到 ,获得积分10
25秒前
26秒前
fsznc完成签到 ,获得积分0
27秒前
yinx完成签到 ,获得积分10
28秒前
明明完成签到 ,获得积分10
28秒前
Jacquielin完成签到 ,获得积分10
30秒前
试试运气应助李盛男采纳,获得10
31秒前
炙热的若枫完成签到 ,获得积分10
31秒前
Ava应助IF采纳,获得10
31秒前
zky发布了新的文献求助10
31秒前
32秒前
Lucas应助lagom采纳,获得10
32秒前
在水一方应助心砚采纳,获得30
35秒前
lalala完成签到 ,获得积分10
36秒前
橙汁完成签到 ,获得积分10
36秒前
大气的冷荷完成签到 ,获得积分20
37秒前
立夏完成签到 ,获得积分10
37秒前
南汐完成签到,获得积分10
39秒前
wackykao完成签到 ,获得积分10
39秒前
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573095
求助须知:如何正确求助?哪些是违规求助? 4659242
关于积分的说明 14724135
捐赠科研通 4599072
什么是DOI,文献DOI怎么找? 2524103
邀请新用户注册赠送积分活动 1494675
关于科研通互助平台的介绍 1464679