Effect of Membrane Thickness on Ion Transport in pH-Regulated Zero-Depth Interfacial Nanopores

纳米孔 化学物理 化学 电动现象 离子 表面电荷 纳米技术 材料科学 物理化学 生物化学 有机化学
作者
Xiaoling Zhang,Ning Hu,Yunjiao Wang,Yun Zhao,Deqiang Wang
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:96 (27): 11009-11017
标识
DOI:10.1021/acs.analchem.4c01700
摘要

Zero-depth interfacial nanopores, which are formed by two crossed nanoscale channels at their intersection interface, have been proposed to increase the spatial resolution of solid-state nanopores. However, research on zero-depth interfacial nanopores is still in its early stages. Although it has been shown that the current passing through an interfacial nanopore is largely independent of the membrane thickness, existing studies have not fully considered the impact of membrane thickness on other ion transport characteristics within these nanopores. In this paper, we investigate the electrokinetic ion transport phenomenon in the zero-depth interfacial nanopores, especially focusing on the influence of membrane thickness on the ion transport phenomenon. Our model incorporates the Poisson-Nernst-Planck equations and the Navier-Stokes equations, featuring a pH-regulated surface charge density. We find that when the thickness of the nanochannels is close to the interface size of the formed interfacial nanopore, the phenomenon of ion transport in the interfacial nanopore is similar to that in a conventional cylindrical nanopore. However, when the thickness of the nanochannels is much greater than the interface size of the formed interfacial nanopore, several distinct phenomena occur. The surface charge density on the inner walls of the interfacial nanopores has a small peak at the interface of the two crossing nanochannels, and the anion concentration changes greatly between the two nanochannels; that is, a much greater anion concentration forms in the nanochannel near the anode side than in the nanochannel near the cathode side. When the surface charge is nonzero, the electric field within the interfacial nanopore creates three extreme points, and the directions of the local electric fields are opposite at the ends of the membrane.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
叁叁肆完成签到,获得积分10
2秒前
2秒前
Zoe完成签到,获得积分10
6秒前
7秒前
高翔发布了新的文献求助10
7秒前
大胆的雪一完成签到,获得积分20
8秒前
LL完成签到,获得积分10
9秒前
TristanW完成签到,获得积分10
9秒前
10秒前
Webridging发布了新的文献求助10
11秒前
12秒前
高翔完成签到,获得积分10
13秒前
Brian发布了新的文献求助10
14秒前
PGL发布了新的文献求助100
15秒前
pluvia完成签到,获得积分10
15秒前
慈祥的雅寒完成签到,获得积分10
15秒前
99668完成签到,获得积分10
15秒前
⊙▽⊙发布了新的文献求助10
16秒前
gjh发布了新的文献求助10
18秒前
big ben完成签到 ,获得积分10
20秒前
科研通AI2S应助lixinlong采纳,获得10
21秒前
养乐多发布了新的文献求助10
21秒前
搜集达人应助科研通管家采纳,获得10
22秒前
桐桐应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
上官若男应助科研通管家采纳,获得10
22秒前
从容的无极应助niy6tyg采纳,获得10
24秒前
sallltyyy完成签到,获得积分10
24秒前
zhenliu完成签到 ,获得积分10
24秒前
25秒前
李健的小迷弟应助PGL采纳,获得10
25秒前
Mry完成签到,获得积分10
25秒前
27秒前
深情安青应助gjh采纳,获得10
28秒前
Theo完成签到,获得积分10
29秒前
Webridging完成签到,获得积分10
30秒前
999发布了新的文献求助10
31秒前
一样谦虚完成签到,获得积分20
31秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461234
求助须知:如何正确求助?哪些是违规求助? 3054927
关于积分的说明 9045666
捐赠科研通 2744832
什么是DOI,文献DOI怎么找? 1505707
科研通“疑难数据库(出版商)”最低求助积分说明 695794
邀请新用户注册赠送积分活动 695233