Multi-modal graph context extraction and consensus-aware learning for emotion recognition in conversation

对话 情态动词 情绪识别 计算机科学 背景(考古学) 心理学 人工智能 语音识别 沟通 历史 化学 考古 高分子化学
作者
Yijing Dai,Jinxing Li,Yingjian Li,Guangming Lu
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:298: 111954-111954 被引量:1
标识
DOI:10.1016/j.knosys.2024.111954
摘要

Multi-modal emotion recognition in conversation is challenging because of the difficulty to jointly leverage the information from heterogeneous text, acoustic, and visual modalities. Recent context-aware methods usually design a graph structure to model dependencies of utterances and speakers, or integrate Multi-modal information. However, they typically lack a sufficient extraction of unimodal context, and rarely explore the emotion consensus prototypes among different samples with the same label. For solving these problems, in this paper, we propose a Graph Context extraction and Consensus-aware Learning (GCCL) framework to excavate context-sensitive fusion features and simulate the emotion evocation process during the emotion consensus learning. Specifically, GCCL contains a well-designed graph-based module to capture speaker, temporal and modality dependencies and integrate information from different modalities. Then, we design an emotion consensus learning unit to mine the most typical feature of each category in each modality. A speaker-guided contrastive learning loss is further proposed to guarantee the diversity between different individuals and the semantic consistency between distinct modalities. Moreover, we construct a consensus-aware unit with an attention-based memory mechanism to preserve semantic correlations among different samples on the category-level. Extensive experimental results on two conversational datasets demonstrate that the proposed GCCL outperforms the state-of-art methods. Code is available at https://github.com/gityider/GCCL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
ZoeChoo完成签到,获得积分10
刚刚
kk完成签到,获得积分10
刚刚
1秒前
千里江山一只蝇完成签到,获得积分10
1秒前
吃的饭广泛发布了新的文献求助200
2秒前
庾傀斗发布了新的文献求助10
2秒前
Warten995完成签到,获得积分10
2秒前
2秒前
chouchou完成签到,获得积分10
3秒前
点墨完成签到 ,获得积分10
3秒前
COCO发布了新的文献求助10
4秒前
zq完成签到,获得积分20
5秒前
热心冷亦发布了新的文献求助10
6秒前
Daisy完成签到,获得积分10
6秒前
6秒前
梵莫完成签到,获得积分10
7秒前
LX发布了新的文献求助10
7秒前
庾傀斗完成签到,获得积分10
7秒前
7秒前
8秒前
CodeCraft应助guanshujuan采纳,获得10
8秒前
SciGPT应助夏天采纳,获得10
8秒前
棋士应助蓝胖子采纳,获得20
8秒前
wysy发布了新的文献求助10
8秒前
JamesPei应助zhc采纳,获得10
9秒前
9秒前
9秒前
加贝完成签到,获得积分10
9秒前
猪肉水饺发布了新的文献求助10
9秒前
我劝告了风完成签到,获得积分10
10秒前
10秒前
12秒前
司空博涛发布了新的文献求助10
12秒前
Singularity应助zzz采纳,获得10
12秒前
不爱吃饭完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
tsuki发布了新的文献求助50
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951389
求助须知:如何正确求助?哪些是违规求助? 3496717
关于积分的说明 11084234
捐赠科研通 3227173
什么是DOI,文献DOI怎么找? 1784313
邀请新用户注册赠送积分活动 868345
科研通“疑难数据库(出版商)”最低求助积分说明 801110