Dual model transfer learning to compensate for individual variability in brain-computer interface

计算机科学 脑-机接口 接口(物质) 学习迁移 对偶(语法数字) 人机交互 传输(计算) 人工智能 机器学习 神经科学 心理学 脑电图 操作系统 艺术 文学类 气泡 最大气泡压力法
作者
Jun Su Kim,HongJune Kim,Chun Kee Chung,June Sic Kim
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:254: 108294-108294
标识
DOI:10.1016/j.cmpb.2024.108294
摘要

Recent advancements in brain-computer interface (BCI) technology have seen a significant shift towards incorporating complex decoding models such as deep neural networks (DNNs) to enhance performance. These models are particularly crucial for sophisticated tasks such as regression for decoding arbitrary movements. However, these BCI models trained and tested on individual data often face challenges with limited performance and generalizability across different subjects. This limitation is primarily due to a tremendous number of parameters of DNN models. Training complex models demands extensive datasets. Nevertheless, group data from many subjects may not produce sufficient decoding performance because of inherent variability in neural signals both across individuals and over time METHODS: To address these challenges, this study proposed a transfer learning approach that could effectively adapt to subject-specific variability in cortical regions. Our method involved training two separate movement decoding models: one on individual data and another on pooled group data. We then created a salience map for each cortical region from the individual model, which helped us identify the input's contribution variance across subjects. Based on the contribution variance, we combined individual and group models using a modified knowledge distillation framework. This approach allowed the group model to be universally applicable by assigning greater weights to input data, while the individual model was fine-tuned to focus on areas with significant individual variance RESULTS: Our combined model effectively encapsulated individual variability. We validated this approach with nine subjects performing arm-reaching tasks, with our method outperforming (mean correlation coefficient, r = 0.75) both individual (r = 0.70) and group models (r = 0.40) in decoding performance. In particular, there were notable improvements in cases where individual models showed low performances (e.g., r = 0.50 in the individual decoder to r = 0.61 in the proposed decoder) CONCLUSIONS: These results not only demonstrate the potential of our method for robust BCI, but also underscore its ability to generalize individual data for broader applicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
共享精神应助xiaoying采纳,获得10
3秒前
3秒前
3秒前
5秒前
胡澍发布了新的文献求助10
8秒前
Kenzonvay发布了新的文献求助10
9秒前
9秒前
level完成签到,获得积分10
10秒前
11秒前
乐乐应助322小弟采纳,获得10
12秒前
13秒前
15秒前
15秒前
佳轩肘子发布了新的文献求助10
16秒前
啊哈第一式完成签到,获得积分10
16秒前
1122发布了新的文献求助10
17秒前
柯夫子完成签到,获得积分10
17秒前
17秒前
17秒前
19秒前
21秒前
21秒前
pluto应助乌兰巴托没有海采纳,获得50
21秒前
ding应助木悠采纳,获得10
22秒前
bigfish发布了新的文献求助10
22秒前
风华发布了新的文献求助30
22秒前
小屁孩完成签到,获得积分10
22秒前
追寻奇迹完成签到 ,获得积分10
23秒前
影子发布了新的文献求助10
23秒前
322小弟发布了新的文献求助10
24秒前
科研通AI2S应助迟原采纳,获得10
24秒前
wanfengzuojiu完成签到,获得积分10
25秒前
25秒前
25秒前
Helic发布了新的文献求助10
25秒前
天天向上完成签到 ,获得积分10
26秒前
天天快乐应助公西香露采纳,获得10
27秒前
27秒前
27秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3228196
求助须知:如何正确求助?哪些是违规求助? 2876005
关于积分的说明 8193611
捐赠科研通 2543161
什么是DOI,文献DOI怎么找? 1373580
科研通“疑难数据库(出版商)”最低求助积分说明 646814
邀请新用户注册赠送积分活动 621310