计算机科学
脑-机接口
接口(物质)
学习迁移
对偶(语法数字)
人机交互
传输(计算)
人工智能
机器学习
神经科学
心理学
脑电图
操作系统
艺术
文学类
气泡
最大气泡压力法
作者
Jun Su Kim,HongJune Kim,Chun Kee Chung,June Sic Kim
标识
DOI:10.1016/j.cmpb.2024.108294
摘要
Recent advancements in brain-computer interface (BCI) technology have seen a significant shift towards incorporating complex decoding models such as deep neural networks (DNNs) to enhance performance. These models are particularly crucial for sophisticated tasks such as regression for decoding arbitrary movements. However, these BCI models trained and tested on individual data often face challenges with limited performance and generalizability across different subjects. This limitation is primarily due to a tremendous number of parameters of DNN models. Training complex models demands extensive datasets. Nevertheless, group data from many subjects may not produce sufficient decoding performance because of inherent variability in neural signals both across individuals and over time METHODS: To address these challenges, this study proposed a transfer learning approach that could effectively adapt to subject-specific variability in cortical regions. Our method involved training two separate movement decoding models: one on individual data and another on pooled group data. We then created a salience map for each cortical region from the individual model, which helped us identify the input's contribution variance across subjects. Based on the contribution variance, we combined individual and group models using a modified knowledge distillation framework. This approach allowed the group model to be universally applicable by assigning greater weights to input data, while the individual model was fine-tuned to focus on areas with significant individual variance RESULTS: Our combined model effectively encapsulated individual variability. We validated this approach with nine subjects performing arm-reaching tasks, with our method outperforming (mean correlation coefficient, r = 0.75) both individual (r = 0.70) and group models (r = 0.40) in decoding performance. In particular, there were notable improvements in cases where individual models showed low performances (e.g., r = 0.50 in the individual decoder to r = 0.61 in the proposed decoder) CONCLUSIONS: These results not only demonstrate the potential of our method for robust BCI, but also underscore its ability to generalize individual data for broader applicability.
科研通智能强力驱动
Strongly Powered by AbleSci AI