已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Dual model transfer learning to compensate for individual variability in brain-computer interface

计算机科学 脑-机接口 接口(物质) 学习迁移 对偶(语法数字) 人机交互 传输(计算) 人工智能 机器学习 神经科学 心理学 脑电图 操作系统 艺术 文学类 气泡 最大气泡压力法
作者
Jun Su Kim,HongJune Kim,Chun Kee Chung,June Sic Kim
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:254: 108294-108294
标识
DOI:10.1016/j.cmpb.2024.108294
摘要

Recent advancements in brain-computer interface (BCI) technology have seen a significant shift towards incorporating complex decoding models such as deep neural networks (DNNs) to enhance performance. These models are particularly crucial for sophisticated tasks such as regression for decoding arbitrary movements. However, these BCI models trained and tested on individual data often face challenges with limited performance and generalizability across different subjects. This limitation is primarily due to a tremendous number of parameters of DNN models. Training complex models demands extensive datasets. Nevertheless, group data from many subjects may not produce sufficient decoding performance because of inherent variability in neural signals both across individuals and over time METHODS: To address these challenges, this study proposed a transfer learning approach that could effectively adapt to subject-specific variability in cortical regions. Our method involved training two separate movement decoding models: one on individual data and another on pooled group data. We then created a salience map for each cortical region from the individual model, which helped us identify the input's contribution variance across subjects. Based on the contribution variance, we combined individual and group models using a modified knowledge distillation framework. This approach allowed the group model to be universally applicable by assigning greater weights to input data, while the individual model was fine-tuned to focus on areas with significant individual variance RESULTS: Our combined model effectively encapsulated individual variability. We validated this approach with nine subjects performing arm-reaching tasks, with our method outperforming (mean correlation coefficient, r = 0.75) both individual (r = 0.70) and group models (r = 0.40) in decoding performance. In particular, there were notable improvements in cases where individual models showed low performances (e.g., r = 0.50 in the individual decoder to r = 0.61 in the proposed decoder) CONCLUSIONS: These results not only demonstrate the potential of our method for robust BCI, but also underscore its ability to generalize individual data for broader applicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明理大树发布了新的文献求助10
刚刚
科研通AI6应助Xumeiling采纳,获得10
3秒前
6秒前
6秒前
6秒前
8秒前
yml完成签到 ,获得积分10
8秒前
zxf发布了新的文献求助10
9秒前
裘青易发布了新的文献求助10
9秒前
electricelectric应助李白白采纳,获得40
9秒前
儒雅的夏山完成签到,获得积分10
10秒前
明理大树完成签到,获得积分20
10秒前
隐形曼青应助WANG采纳,获得10
13秒前
丫丫发布了新的文献求助10
13秒前
裘青易完成签到,获得积分10
15秒前
15秒前
Hello应助柠檬泡芙采纳,获得10
15秒前
smile完成签到,获得积分10
16秒前
FashionBoy应助zhang采纳,获得10
16秒前
handsomecat发布了新的文献求助10
17秒前
味精发布了新的文献求助10
18秒前
18秒前
峡星牙完成签到,获得积分10
19秒前
20秒前
liu应助叫我陈老师啊采纳,获得20
20秒前
张秉环完成签到,获得积分10
21秒前
岳南希完成签到,获得积分10
21秒前
乐乐应助峡星牙采纳,获得10
23秒前
libin发布了新的文献求助10
23秒前
WANG发布了新的文献求助10
24秒前
科研通AI6应助cookie采纳,获得10
24秒前
伯赏芷烟完成签到,获得积分10
25秒前
25秒前
qq158014169发布了新的文献求助10
28秒前
爆米花应助张秉环采纳,获得10
29秒前
轻松书白完成签到,获得积分10
29秒前
Criminology34举报杨宜璠求助涉嫌违规
29秒前
浮游应助hanhan采纳,获得10
29秒前
榴莲完成签到,获得积分10
29秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Le transsexualisme : étude nosographique et médico-légale (en PDF) 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5312379
求助须知:如何正确求助?哪些是违规求助? 4456101
关于积分的说明 13865341
捐赠科研通 4344497
什么是DOI,文献DOI怎么找? 2385924
邀请新用户注册赠送积分活动 1380277
关于科研通互助平台的介绍 1348681