Dual model transfer learning to compensate for individual variability in brain-computer interface

计算机科学 脑-机接口 接口(物质) 学习迁移 对偶(语法数字) 人机交互 传输(计算) 人工智能 机器学习 神经科学 心理学 脑电图 操作系统 艺术 文学类 气泡 最大气泡压力法
作者
Jun Su Kim,HongJune Kim,Chun Kee Chung,June Sic Kim
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:254: 108294-108294
标识
DOI:10.1016/j.cmpb.2024.108294
摘要

Recent advancements in brain-computer interface (BCI) technology have seen a significant shift towards incorporating complex decoding models such as deep neural networks (DNNs) to enhance performance. These models are particularly crucial for sophisticated tasks such as regression for decoding arbitrary movements. However, these BCI models trained and tested on individual data often face challenges with limited performance and generalizability across different subjects. This limitation is primarily due to a tremendous number of parameters of DNN models. Training complex models demands extensive datasets. Nevertheless, group data from many subjects may not produce sufficient decoding performance because of inherent variability in neural signals both across individuals and over time METHODS: To address these challenges, this study proposed a transfer learning approach that could effectively adapt to subject-specific variability in cortical regions. Our method involved training two separate movement decoding models: one on individual data and another on pooled group data. We then created a salience map for each cortical region from the individual model, which helped us identify the input's contribution variance across subjects. Based on the contribution variance, we combined individual and group models using a modified knowledge distillation framework. This approach allowed the group model to be universally applicable by assigning greater weights to input data, while the individual model was fine-tuned to focus on areas with significant individual variance RESULTS: Our combined model effectively encapsulated individual variability. We validated this approach with nine subjects performing arm-reaching tasks, with our method outperforming (mean correlation coefficient, r = 0.75) both individual (r = 0.70) and group models (r = 0.40) in decoding performance. In particular, there were notable improvements in cases where individual models showed low performances (e.g., r = 0.50 in the individual decoder to r = 0.61 in the proposed decoder) CONCLUSIONS: These results not only demonstrate the potential of our method for robust BCI, but also underscore its ability to generalize individual data for broader applicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Albert发布了新的文献求助10
刚刚
叫我富婆儿完成签到,获得积分10
刚刚
Ava应助舒心的如柏采纳,获得10
1秒前
1秒前
辛普森完成签到,获得积分10
1秒前
顺顺顺顺完成签到 ,获得积分10
1秒前
爱吃蔬菜完成签到,获得积分10
2秒前
秋秋儿完成签到,获得积分10
2秒前
wy完成签到,获得积分10
3秒前
888完成签到,获得积分10
3秒前
3秒前
火花发布了新的文献求助10
4秒前
Sharif318完成签到,获得积分10
4秒前
充电宝应助TiAmo采纳,获得10
5秒前
Emper发布了新的文献求助10
5秒前
思源应助踟蹰采纳,获得10
5秒前
5秒前
6秒前
Kurenai发布了新的文献求助100
6秒前
三岁完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
6秒前
yang完成签到,获得积分10
6秒前
杰杰发布了新的文献求助20
7秒前
科研通AI6应助222采纳,获得10
7秒前
wsj发布了新的文献求助10
8秒前
st完成签到,获得积分10
8秒前
活力的含桃完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
zhq发布了新的文献求助10
10秒前
得失心的诅咒完成签到 ,获得积分10
11秒前
11秒前
11秒前
李健的小迷弟应助菠萝采纳,获得10
11秒前
12秒前
浮游应助哈哈哈哈哈采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468825
求助须知:如何正确求助?哪些是违规求助? 4572157
关于积分的说明 14333943
捐赠科研通 4498964
什么是DOI,文献DOI怎么找? 2464789
邀请新用户注册赠送积分活动 1453376
关于科研通互助平台的介绍 1427939