亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Dual model transfer learning to compensate for individual variability in brain-computer interface

计算机科学 脑-机接口 接口(物质) 学习迁移 对偶(语法数字) 人机交互 传输(计算) 人工智能 机器学习 神经科学 心理学 脑电图 操作系统 艺术 文学类 气泡 最大气泡压力法
作者
Jun Su Kim,HongJune Kim,Chun Kee Chung,June Sic Kim
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:254: 108294-108294
标识
DOI:10.1016/j.cmpb.2024.108294
摘要

Recent advancements in brain-computer interface (BCI) technology have seen a significant shift towards incorporating complex decoding models such as deep neural networks (DNNs) to enhance performance. These models are particularly crucial for sophisticated tasks such as regression for decoding arbitrary movements. However, these BCI models trained and tested on individual data often face challenges with limited performance and generalizability across different subjects. This limitation is primarily due to a tremendous number of parameters of DNN models. Training complex models demands extensive datasets. Nevertheless, group data from many subjects may not produce sufficient decoding performance because of inherent variability in neural signals both across individuals and over time METHODS: To address these challenges, this study proposed a transfer learning approach that could effectively adapt to subject-specific variability in cortical regions. Our method involved training two separate movement decoding models: one on individual data and another on pooled group data. We then created a salience map for each cortical region from the individual model, which helped us identify the input's contribution variance across subjects. Based on the contribution variance, we combined individual and group models using a modified knowledge distillation framework. This approach allowed the group model to be universally applicable by assigning greater weights to input data, while the individual model was fine-tuned to focus on areas with significant individual variance RESULTS: Our combined model effectively encapsulated individual variability. We validated this approach with nine subjects performing arm-reaching tasks, with our method outperforming (mean correlation coefficient, r = 0.75) both individual (r = 0.70) and group models (r = 0.40) in decoding performance. In particular, there were notable improvements in cases where individual models showed low performances (e.g., r = 0.50 in the individual decoder to r = 0.61 in the proposed decoder) CONCLUSIONS: These results not only demonstrate the potential of our method for robust BCI, but also underscore its ability to generalize individual data for broader applicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助30
3秒前
3秒前
Tobby发布了新的文献求助10
6秒前
小小猪完成签到,获得积分10
7秒前
14秒前
零玖完成签到 ,获得积分10
22秒前
34秒前
xiaozhang发布了新的文献求助10
36秒前
小马甲应助xiaozhang采纳,获得10
49秒前
1分钟前
lucky发布了新的文献求助10
1分钟前
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
平常念蕾完成签到,获得积分10
1分钟前
TK完成签到 ,获得积分10
1分钟前
Zx_1993应助心灵美的大山采纳,获得20
1分钟前
1分钟前
平常念蕾发布了新的文献求助10
1分钟前
水刃木完成签到,获得积分10
2分钟前
2分钟前
elliotzzz发布了新的文献求助10
2分钟前
Shion完成签到,获得积分10
2分钟前
希望天下0贩的0应助yo采纳,获得10
2分钟前
oceana发布了新的文献求助10
2分钟前
浮游应助yqt采纳,获得30
2分钟前
oceana完成签到,获得积分10
2分钟前
2分钟前
所所应助平常念蕾采纳,获得10
2分钟前
yo发布了新的文献求助10
2分钟前
3分钟前
elliotzzz应助jikngsk采纳,获得10
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426408
求助须知:如何正确求助?哪些是违规求助? 4540188
关于积分的说明 14171785
捐赠科研通 4457921
什么是DOI,文献DOI怎么找? 2444736
邀请新用户注册赠送积分活动 1435738
关于科研通互助平台的介绍 1413211