Machine Learning Optimization of Target Velocity Curves in Hybrid Electric Trains

火车 计算机科学 人工智能 机器学习 地理 地图学
作者
J.Y. Ma,Jiye Zhang,Hao Sui
出处
期刊:International Journal of Pattern Recognition and Artificial Intelligence [World Scientific]
标识
DOI:10.1142/s0218001424510194
摘要

This study tackles the challenge of refining the target velocity curves for hybrid electric trains, governed primarily by onboard Automatic Train Operation (ATO) systems. These systems take into account various factors, such as the interstation line conditions and the specific traction and braking characteristics of hybrid trains. Traditional approaches, which rely on fixed speed–position sequences to navigate trains and ensure safety through the Automatic Train Protection (ATP) system, struggle to adapt to dynamic environmental changes, leading to compromised operational efficiency. In response, our research adopts a machine learning framework, with a particular emphasis on reinforcement learning, to devise a real-time, flexible optimization model for determining the train’s target velocity curve. This model harnesses the potential of the double-depth Q network to enhance the optimization process. The primary objective is to improve the punctuality and energy efficiency of train operations while simultaneously increasing passenger comfort through better adaptation to environmental variations. Simulation results demonstrate that the newly optimized target velocity curve notably diminishes the on-time errors for hybrid trains and achieves approximately 0.98% in energy savings compared to traditional heuristic algorithms. These outcomes highlight the significant advantages of integrating sophisticated machine learning techniques like double-depth Q network to boost the efficiency and sustainability of hybrid electric train operations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
泉眼发布了新的文献求助10
1秒前
冰红茶完成签到,获得积分10
2秒前
yu001完成签到,获得积分10
3秒前
牡丹皮炭发布了新的文献求助30
4秒前
4秒前
赘婿应助Tina采纳,获得10
4秒前
与一完成签到 ,获得积分10
5秒前
5秒前
6秒前
LQX2141发布了新的文献求助10
6秒前
7秒前
小猪佩奇发布了新的文献求助10
7秒前
SciGPT应助劈里啪啦滴毛毛采纳,获得10
7秒前
北顾发布了新的文献求助10
7秒前
机智马里奥完成签到,获得积分10
8秒前
Hello应助丙烯酸树脂采纳,获得10
8秒前
从容幼南发布了新的文献求助10
10秒前
Zutilm完成签到,获得积分10
10秒前
10秒前
11秒前
ll发布了新的文献求助30
12秒前
ooo发布了新的文献求助10
12秒前
郭志倩发布了新的文献求助10
12秒前
小蘑菇应助旋转鸡爪子采纳,获得10
13秒前
聂先生完成签到,获得积分10
14秒前
充电宝应助绝情继父采纳,获得10
15秒前
15秒前
易达发布了新的文献求助30
16秒前
16秒前
桐桐应助丢丢银采纳,获得20
16秒前
香蕉觅云应助北顾采纳,获得10
17秒前
18秒前
18秒前
起司头棕酷酷完成签到 ,获得积分10
18秒前
小二郎应助小猪佩奇采纳,获得10
19秒前
19秒前
illusion2019应助愤怒的鲨鱼采纳,获得20
20秒前
等待的松鼠完成签到,获得积分10
20秒前
爆米花应助小卫卫采纳,获得10
22秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998499
求助须知:如何正确求助?哪些是违规求助? 3538037
关于积分的说明 11273124
捐赠科研通 3277005
什么是DOI,文献DOI怎么找? 1807250
邀请新用户注册赠送积分活动 883825
科研通“疑难数据库(出版商)”最低求助积分说明 810061