Machine Learning Optimization of Target Velocity Curves in Hybrid Electric Trains

火车 计算机科学 人工智能 机器学习 地理 地图学
作者
J.Y. Ma,Jiye Zhang,Hao Sui
出处
期刊:International Journal of Pattern Recognition and Artificial Intelligence [World Scientific]
标识
DOI:10.1142/s0218001424510194
摘要

This study tackles the challenge of refining the target velocity curves for hybrid electric trains, governed primarily by onboard Automatic Train Operation (ATO) systems. These systems take into account various factors, such as the interstation line conditions and the specific traction and braking characteristics of hybrid trains. Traditional approaches, which rely on fixed speed–position sequences to navigate trains and ensure safety through the Automatic Train Protection (ATP) system, struggle to adapt to dynamic environmental changes, leading to compromised operational efficiency. In response, our research adopts a machine learning framework, with a particular emphasis on reinforcement learning, to devise a real-time, flexible optimization model for determining the train’s target velocity curve. This model harnesses the potential of the double-depth Q network to enhance the optimization process. The primary objective is to improve the punctuality and energy efficiency of train operations while simultaneously increasing passenger comfort through better adaptation to environmental variations. Simulation results demonstrate that the newly optimized target velocity curve notably diminishes the on-time errors for hybrid trains and achieves approximately 0.98% in energy savings compared to traditional heuristic algorithms. These outcomes highlight the significant advantages of integrating sophisticated machine learning techniques like double-depth Q network to boost the efficiency and sustainability of hybrid electric train operations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
激动的猫咪完成签到,获得积分10
1秒前
123完成签到 ,获得积分10
1秒前
月亮之下完成签到 ,获得积分10
2秒前
张紫豹发布了新的文献求助10
2秒前
重要墨镜发布了新的文献求助10
2秒前
3秒前
3秒前
如茵发布了新的文献求助10
3秒前
小小台yeah完成签到,获得积分10
4秒前
犹豫的宝莹完成签到,获得积分10
4秒前
4秒前
4秒前
生化材只有环完成签到,获得积分10
5秒前
5秒前
纯情的天奇完成签到,获得积分10
5秒前
QL驳回了wanci应助
6秒前
琦琦发布了新的文献求助10
7秒前
7秒前
哒哒哒发布了新的文献求助10
7秒前
科研通AI5应助夕荀采纳,获得10
7秒前
纳纳椰完成签到,获得积分10
7秒前
神勇一寡完成签到,获得积分10
7秒前
科研通AI5应助高高采纳,获得10
8秒前
fenghy发布了新的文献求助10
8秒前
科研通AI5应助乱武采纳,获得10
8秒前
北北发布了新的文献求助10
9秒前
9秒前
YLS完成签到,获得积分10
9秒前
10秒前
乔123发布了新的文献求助10
10秒前
10秒前
优美飞薇完成签到,获得积分10
10秒前
称心花生完成签到,获得积分20
11秒前
kyhappy_2002完成签到 ,获得积分10
11秒前
贾贾爱科研完成签到,获得积分10
11秒前
重要墨镜完成签到,获得积分10
12秒前
乐乐应助阳光青烟采纳,获得10
12秒前
13秒前
开心超人发布了新的文献求助10
13秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842096
求助须知:如何正确求助?哪些是违规求助? 3384295
关于积分的说明 10533721
捐赠科研通 3104627
什么是DOI,文献DOI怎么找? 1709760
邀请新用户注册赠送积分活动 823319
科研通“疑难数据库(出版商)”最低求助积分说明 773993