RLingua: Improving Reinforcement Learning Sample Efficiency in Robotic Manipulations With Large Language Models

强化学习 样品(材料) 钢筋 计算机科学 人工智能 心理学 社会心理学 化学 色谱法
作者
Liangliang Chen,Yutian Lei,Shiyu Jin,Ying Zhang,Liangjun Zhang
出处
期刊:IEEE robotics and automation letters 卷期号:9 (7): 6075-6082
标识
DOI:10.1109/lra.2024.3400189
摘要

Reinforcement learning (RL) has demonstrated its capability in solving various tasks but is notorious for its low sample efficiency. In this paper, we propose RLingua, a framework that can leverage the internal knowledge of large language models (LLMs) to reduce the sample complexity of RL in robotic manipulations. To this end, we first present a method for extracting the prior knowledge of LLMs by prompt engineering so that a preliminary rule-based robot controller for a specific task can be generated in a user-friendly manner. Despite being imperfect, the LLM-generated robot controller is utilized to produce action samples during rollouts with a decaying probability, thereby improving RL's sample efficiency. We employ TD3, the widely-used RL baseline method, and modify the actor loss to regularize the policy learning towards the LLM-generated controller. RLingua also provides a novel method of improving the imperfect LLM-generated robot controllers by RL. We demonstrate that RLingua can significantly reduce the sample complexity of TD3 in four robot tasks of panda_gym and achieve high success rates in 12 sparsely rewarded robot tasks in RLBench , where the standard TD3 fails. Additionally, we validated RLingua's effectiveness in real-world robot experiments through Sim2Real, demonstrating that the learned policies are effectively transferable to real robot tasks. For videos, please visit https://rlingua.github.io .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
肉脸小鱼完成签到 ,获得积分10
刚刚
瓢瓢完成签到,获得积分10
刚刚
Kuhn_W完成签到,获得积分10
2秒前
Blake发布了新的文献求助10
2秒前
在水一方应助Lee采纳,获得10
3秒前
霸气忆灵发布了新的文献求助10
3秒前
善良的水蓉完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
5秒前
汉堡包应助yiding采纳,获得10
5秒前
5秒前
Yimi发布了新的文献求助10
6秒前
完美世界应助whh123采纳,获得10
6秒前
6秒前
科研通AI2S应助妥妥酱采纳,获得10
7秒前
华仔应助JoJo采纳,获得10
8秒前
8秒前
8秒前
打打应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
wanci应助科研通管家采纳,获得10
9秒前
赘婿应助科研通管家采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
拉拉应助科研通管家采纳,获得10
9秒前
科目三应助zhangling采纳,获得10
9秒前
不配.应助科研通管家采纳,获得10
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得10
9秒前
Owen应助科研通管家采纳,获得10
9秒前
JamesPei应助科研通管家采纳,获得10
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
脑洞疼应助科研通管家采纳,获得10
10秒前
完美世界应助科研通管家采纳,获得10
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
CipherSage应助科研通管家采纳,获得10
10秒前
深情安青应助科研通管家采纳,获得10
10秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160609
求助须知:如何正确求助?哪些是违规求助? 2811828
关于积分的说明 7893452
捐赠科研通 2470647
什么是DOI,文献DOI怎么找? 1315718
科研通“疑难数据库(出版商)”最低求助积分说明 630929
版权声明 602052