RLingua: Improving Reinforcement Learning Sample Efficiency in Robotic Manipulations With Large Language Models

强化学习 样品(材料) 钢筋 计算机科学 人工智能 心理学 社会心理学 化学 色谱法
作者
Liangliang Chen,Yutian Lei,Shiyu Jin,Ying Zhang,Liangjun Zhang
出处
期刊:IEEE robotics and automation letters 卷期号:9 (7): 6075-6082
标识
DOI:10.1109/lra.2024.3400189
摘要

Reinforcement learning (RL) has demonstrated its capability in solving various tasks but is notorious for its low sample efficiency. In this paper, we propose RLingua, a framework that can leverage the internal knowledge of large language models (LLMs) to reduce the sample complexity of RL in robotic manipulations. To this end, we first present a method for extracting the prior knowledge of LLMs by prompt engineering so that a preliminary rule-based robot controller for a specific task can be generated in a user-friendly manner. Despite being imperfect, the LLM-generated robot controller is utilized to produce action samples during rollouts with a decaying probability, thereby improving RL's sample efficiency. We employ TD3, the widely-used RL baseline method, and modify the actor loss to regularize the policy learning towards the LLM-generated controller. RLingua also provides a novel method of improving the imperfect LLM-generated robot controllers by RL. We demonstrate that RLingua can significantly reduce the sample complexity of TD3 in four robot tasks of panda_gym and achieve high success rates in 12 sparsely rewarded robot tasks in RLBench , where the standard TD3 fails. Additionally, we validated RLingua's effectiveness in real-world robot experiments through Sim2Real, demonstrating that the learned policies are effectively transferable to real robot tasks. For videos, please visit https://rlingua.github.io .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sugar发布了新的文献求助20
刚刚
Carrie完成签到,获得积分20
1秒前
沉静凡白发布了新的文献求助10
2秒前
2秒前
云淡风轻发布了新的文献求助10
3秒前
3秒前
执风完成签到,获得积分20
3秒前
英吉利25发布了新的文献求助10
3秒前
坚定的小土豆完成签到,获得积分20
4秒前
机灵柚子发布了新的文献求助200
4秒前
可爱的函函应助幽默果汁采纳,获得10
5秒前
科研通AI6.1应助落水无波采纳,获得10
5秒前
5秒前
TT完成签到 ,获得积分20
6秒前
隔壁海绵宝宝完成签到,获得积分10
6秒前
1640301090完成签到,获得积分10
6秒前
7秒前
十一发布了新的文献求助20
7秒前
玩命的小虾米完成签到,获得积分10
7秒前
不赖床的科研狗完成签到,获得积分10
7秒前
whatever应助加菲丰丰采纳,获得20
7秒前
HH完成签到 ,获得积分10
7秒前
哭泣海雪发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
星辰大海应助蚂蚁牙黑采纳,获得10
10秒前
11秒前
一树灯笼发布了新的文献求助10
11秒前
11秒前
smottom应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
斯文败类应助科研通管家采纳,获得10
12秒前
haoduoyu完成签到 ,获得积分10
12秒前
smottom应助科研通管家采纳,获得10
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
大模型应助科研通管家采纳,获得10
12秒前
斯文败类应助科研通管家采纳,获得10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785064
求助须知:如何正确求助?哪些是违规求助? 5685309
关于积分的说明 15466430
捐赠科研通 4914115
什么是DOI,文献DOI怎么找? 2645093
邀请新用户注册赠送积分活动 1592886
关于科研通互助平台的介绍 1547281