Understanding the wear behavior and mechanism of gradient nanostructured M50 bearing steel through nanoscratching tests

材料科学 机制(生物学) 方位(导航) 冶金 复合材料 法律工程学 哲学 地图学 认识论 工程类 地理
作者
Xiong Yue,Shan Hu,Fei Yin,Jian Wang
出处
期刊:Materials today communications [Elsevier]
卷期号:39: 109235-109235
标识
DOI:10.1016/j.mtcomm.2024.109235
摘要

A gradient nanostructured M50 bearing steel with gradient structural size, carbides, and dislocation density was successfully fabricated by ultrasonic shot peening (USP) technology at room temperature. The friction behaviour and mechanism of gradient nanostructure M50 steel were investigated by using nanoscratch technology under various normal applied loads and depths. Under low normal applied load, gradient samples at ~5 μm depth exhibited a 26.5% maximum reduction in wear rate compared to the tempered sample; under high normal applied load, wear rates for samples at ~100 μm depth exhibited a maximum reduction of 44.6%. At low normal applied load, the wear mechanism involves plowing; while at high normal applied load, the wear mechanism shifts to cutting. Under low normal applied load, wear resistance correlates positively with hardness and negatively with structural size. Under high normal applied load, the increase in hardness of the martensite matrix and the partial decomposition of coarse spherical carbides enable the carbides on the surface of the USPed sample to withstand higher shear stress and stronger stress concentration, preventing cracking of the matrix and carbide edges, and spalling of carbides. High dislocation density (resulting in residual compressive stress) will slow down or inhibit the generation and expansion of cracks during the scratching process, potentially explaining why samples at ~100 μm depths exhibit superior wear resistance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
废羊羊完成签到 ,获得积分10
刚刚
俏皮不可发布了新的文献求助10
刚刚
ZZ完成签到,获得积分20
刚刚
Jupiter发布了新的文献求助10
1秒前
星辰大海应助坎德拉采纳,获得10
1秒前
独特绣连完成签到,获得积分20
1秒前
hailan发布了新的文献求助10
1秒前
风趣飞柏完成签到,获得积分10
2秒前
miaogu发布了新的文献求助10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
小青椒应助科研通管家采纳,获得30
2秒前
2秒前
2秒前
浮游应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
浮游应助科研通管家采纳,获得10
2秒前
2秒前
3秒前
3秒前
3秒前
lunky完成签到,获得积分20
3秒前
lililiiii发布了新的文献求助10
4秒前
coffee发布了新的文献求助10
4秒前
荀煜祺完成签到,获得积分10
4秒前
4秒前
幽默千秋发布了新的文献求助10
5秒前
5秒前
慕青应助烂漫的初之采纳,获得10
5秒前
5秒前
5秒前
5秒前
Chen完成签到 ,获得积分10
5秒前
科研鲁宾孙完成签到,获得积分20
5秒前
svaair发布了新的文献求助10
5秒前
5秒前
苦学僧完成签到,获得积分10
5秒前
独特绣连发布了新的文献求助10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651881
求助须知:如何正确求助?哪些是违规求助? 4786125
关于积分的说明 15056850
捐赠科研通 4810523
什么是DOI,文献DOI怎么找? 2573252
邀请新用户注册赠送积分活动 1529137
关于科研通互助平台的介绍 1488090