Annotations-free survival prediction with WSIs using graph convolutional neural networks.

卷积神经网络 图形 医学 人工智能 计算生物学 计算机科学 生物 理论计算机科学
作者
Qianqian Kong,Ruilei Li,Jiaran Zhang,K Li,Chunlei Ge,Xieqiao Yan,Hong Yao,Jun Guo,Chen Li
出处
期刊:Journal of Clinical Oncology [Lippincott Williams & Wilkins]
卷期号:42 (16_suppl): e16501-e16501
标识
DOI:10.1200/jco.2024.42.16_suppl.e16501
摘要

e16501 Background: Survival prediction of cancer patients has always been an challenging problem.Tumor microenvironment (TME) Analyzation based on whole-slide-images (WSIs) has provide an effective perspective for survival prediction. However, most existing TME analyzation based on cell segmentation or classification relies heavily on labor-intensive cell-level annotations of pathologists. Furthermore, except for each individual cell or local pathological feature, survival prediction also involves local-level pathological features interactions in tumor microenvironments. This requires context-awareness based on histological features to fully infer the patient's survival risk. Therefore, we explored a model based on graph convolutional neural networks (GCNN) to perform survival prediction of cancer patients using WSIs. Methods: We utilized WSIs collected from The Cancer Genome Atlas (TCGA) to develop a graph convolutional neural network for survival prediction of cancer patients. The model leverages the advantages of graph structures to autonomously learn the histopathological contextual features in WSIs, and therefore can incorporate additional and crucial tumor microenvironment interaction information while avoiding the labor-intensive annotations. WSIs of two different cancers, KIRC and LUAD, were randomly divided into training, validation, and testing sets in a ratio of 7:1:2. The performance of the constructed model is evaluated using the test set and the results are compared with other state-of-art methods. Results: Our work is compared with other state-of-art weakly supervised learning methods for survival prediction in computational pathology. Abundant experimental results shown that our method outperformed previous methods on these two cancer types (achieving a 2.9% improvement compared to Multiple Instance Learning (MIL) and a 2.6% improvement compared to Attention MIL), with an overall c-index of 0.646. Additionally, we evaluated the interpretability of our model through attention heatmaps of low-risk and high-risk patients. Conclusions: We have developed a GCNN based model, combined with attention mechanisms, to learn features of heterogeneous tumor microenvironments and their contextual information from memory-efficient representations of highly correlated image patches for cancer patients survival prediction. This model is applicable to any weakly supervised learning task in computational pathology that involves slide-level or patient-level labels, making it an effective supplementary diagnostic tool for oncologists and pathologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ymX完成签到,获得积分10
刚刚
刚刚
yooloo发布了新的文献求助10
1秒前
一只咸鱼发布了新的文献求助10
1秒前
科研丁发布了新的文献求助10
1秒前
Aliothae发布了新的文献求助10
1秒前
Cc完成签到,获得积分10
2秒前
情怀应助zxm采纳,获得10
2秒前
科研通AI5应助闪闪的梦柏采纳,获得10
2秒前
研友_7ZebY8完成签到,获得积分10
3秒前
桐桐应助开花开花采纳,获得10
3秒前
3秒前
iW完成签到,获得积分10
4秒前
4秒前
脑洞疼应助Giroro_roro采纳,获得10
4秒前
芜湖起飞完成签到 ,获得积分10
4秒前
4秒前
Happyness应助慈祥的冬瓜采纳,获得20
4秒前
5秒前
5秒前
一瓶水发布了新的文献求助10
5秒前
6秒前
英俊的铭应助xiaominza采纳,获得10
6秒前
aa完成签到,获得积分10
6秒前
沐晴完成签到,获得积分10
7秒前
7秒前
ccalvintan完成签到,获得积分10
7秒前
7秒前
haorui发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
Elliot_315发布了新的文献求助10
8秒前
8秒前
8秒前
传奇3应助xy采纳,获得10
8秒前
VVV完成签到 ,获得积分10
9秒前
9秒前
Aliothae完成签到,获得积分20
11秒前
11秒前
萝卜发布了新的文献求助10
11秒前
饕餮发布了新的文献求助10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986953
求助须知:如何正确求助?哪些是违规求助? 3529326
关于积分的说明 11244328
捐赠科研通 3267695
什么是DOI,文献DOI怎么找? 1803880
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808620