亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Annotations-free survival prediction with WSIs using graph convolutional neural networks.

卷积神经网络 图形 医学 人工智能 计算生物学 计算机科学 生物 理论计算机科学
作者
Qianqian Kong,Ruilei Li,Jiaran Zhang,K Li,Chunlei Ge,Xieqiao Yan,Hong Yao,Jun Guo,Chen Li
出处
期刊:Journal of Clinical Oncology [American Society of Clinical Oncology]
卷期号:42 (16_suppl): e16501-e16501
标识
DOI:10.1200/jco.2024.42.16_suppl.e16501
摘要

e16501 Background: Survival prediction of cancer patients has always been an challenging problem.Tumor microenvironment (TME) Analyzation based on whole-slide-images (WSIs) has provide an effective perspective for survival prediction. However, most existing TME analyzation based on cell segmentation or classification relies heavily on labor-intensive cell-level annotations of pathologists. Furthermore, except for each individual cell or local pathological feature, survival prediction also involves local-level pathological features interactions in tumor microenvironments. This requires context-awareness based on histological features to fully infer the patient's survival risk. Therefore, we explored a model based on graph convolutional neural networks (GCNN) to perform survival prediction of cancer patients using WSIs. Methods: We utilized WSIs collected from The Cancer Genome Atlas (TCGA) to develop a graph convolutional neural network for survival prediction of cancer patients. The model leverages the advantages of graph structures to autonomously learn the histopathological contextual features in WSIs, and therefore can incorporate additional and crucial tumor microenvironment interaction information while avoiding the labor-intensive annotations. WSIs of two different cancers, KIRC and LUAD, were randomly divided into training, validation, and testing sets in a ratio of 7:1:2. The performance of the constructed model is evaluated using the test set and the results are compared with other state-of-art methods. Results: Our work is compared with other state-of-art weakly supervised learning methods for survival prediction in computational pathology. Abundant experimental results shown that our method outperformed previous methods on these two cancer types (achieving a 2.9% improvement compared to Multiple Instance Learning (MIL) and a 2.6% improvement compared to Attention MIL), with an overall c-index of 0.646. Additionally, we evaluated the interpretability of our model through attention heatmaps of low-risk and high-risk patients. Conclusions: We have developed a GCNN based model, combined with attention mechanisms, to learn features of heterogeneous tumor microenvironments and their contextual information from memory-efficient representations of highly correlated image patches for cancer patients survival prediction. This model is applicable to any weakly supervised learning task in computational pathology that involves slide-level or patient-level labels, making it an effective supplementary diagnostic tool for oncologists and pathologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
27秒前
缥缈嫣发布了新的文献求助10
30秒前
斯文败类应助科研通管家采纳,获得10
33秒前
58秒前
1分钟前
骆十八发布了新的文献求助10
1分钟前
骆十八完成签到,获得积分10
1分钟前
1分钟前
朴实初夏完成签到 ,获得积分10
1分钟前
1分钟前
Krim完成签到 ,获得积分10
2分钟前
POWER完成签到,获得积分10
2分钟前
LL完成签到,获得积分10
2分钟前
烨枫晨曦完成签到,获得积分10
2分钟前
英姑应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
哈哈哈哈完成签到 ,获得积分10
2分钟前
2分钟前
Jj7发布了新的文献求助30
3分钟前
3分钟前
4分钟前
4分钟前
俞慕儿完成签到 ,获得积分10
4分钟前
Jj7发布了新的文献求助10
4分钟前
4分钟前
光亮的成风完成签到,获得积分10
4分钟前
5分钟前
Jj7完成签到,获得积分10
5分钟前
33完成签到,获得积分10
5分钟前
5分钟前
李想家完成签到,获得积分10
5分钟前
李想家发布了新的文献求助20
5分钟前
激动的似狮完成签到,获得积分10
6分钟前
Chzym完成签到,获得积分10
6分钟前
6分钟前
拼搏问薇完成签到 ,获得积分10
6分钟前
Chzym发布了新的文献求助10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311153
求助须知:如何正确求助?哪些是违规求助? 2943900
关于积分的说明 8516704
捐赠科研通 2619261
什么是DOI,文献DOI怎么找? 1432183
科研通“疑难数据库(出版商)”最低求助积分说明 664520
邀请新用户注册赠送积分活动 649810