亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Annotations-free survival prediction with WSIs using graph convolutional neural networks.

卷积神经网络 图形 医学 人工智能 计算生物学 计算机科学 生物 理论计算机科学
作者
Qianqian Kong,Ruilei Li,Jiaran Zhang,K Li,Chunlei Ge,Xieqiao Yan,Hong Yao,Jun Guo,Chen Li
出处
期刊:Journal of Clinical Oncology [American Society of Clinical Oncology]
卷期号:42 (16_suppl): e16501-e16501
标识
DOI:10.1200/jco.2024.42.16_suppl.e16501
摘要

e16501 Background: Survival prediction of cancer patients has always been an challenging problem.Tumor microenvironment (TME) Analyzation based on whole-slide-images (WSIs) has provide an effective perspective for survival prediction. However, most existing TME analyzation based on cell segmentation or classification relies heavily on labor-intensive cell-level annotations of pathologists. Furthermore, except for each individual cell or local pathological feature, survival prediction also involves local-level pathological features interactions in tumor microenvironments. This requires context-awareness based on histological features to fully infer the patient's survival risk. Therefore, we explored a model based on graph convolutional neural networks (GCNN) to perform survival prediction of cancer patients using WSIs. Methods: We utilized WSIs collected from The Cancer Genome Atlas (TCGA) to develop a graph convolutional neural network for survival prediction of cancer patients. The model leverages the advantages of graph structures to autonomously learn the histopathological contextual features in WSIs, and therefore can incorporate additional and crucial tumor microenvironment interaction information while avoiding the labor-intensive annotations. WSIs of two different cancers, KIRC and LUAD, were randomly divided into training, validation, and testing sets in a ratio of 7:1:2. The performance of the constructed model is evaluated using the test set and the results are compared with other state-of-art methods. Results: Our work is compared with other state-of-art weakly supervised learning methods for survival prediction in computational pathology. Abundant experimental results shown that our method outperformed previous methods on these two cancer types (achieving a 2.9% improvement compared to Multiple Instance Learning (MIL) and a 2.6% improvement compared to Attention MIL), with an overall c-index of 0.646. Additionally, we evaluated the interpretability of our model through attention heatmaps of low-risk and high-risk patients. Conclusions: We have developed a GCNN based model, combined with attention mechanisms, to learn features of heterogeneous tumor microenvironments and their contextual information from memory-efficient representations of highly correlated image patches for cancer patients survival prediction. This model is applicable to any weakly supervised learning task in computational pathology that involves slide-level or patient-level labels, making it an effective supplementary diagnostic tool for oncologists and pathologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
兴奋秋珊发布了新的文献求助10
1秒前
微茫发布了新的文献求助10
2秒前
7秒前
微茫完成签到,获得积分10
8秒前
兴奋秋珊发布了新的文献求助10
14秒前
nhzz2023完成签到 ,获得积分10
17秒前
Ashao完成签到 ,获得积分10
28秒前
月亮完成签到 ,获得积分10
44秒前
顺心醉柳完成签到 ,获得积分10
52秒前
兴奋秋珊发布了新的文献求助10
54秒前
1分钟前
丘比特应助xuan采纳,获得10
1分钟前
追寻绮玉发布了新的文献求助10
1分钟前
1分钟前
兴奋秋珊发布了新的文献求助10
1分钟前
xuan发布了新的文献求助10
1分钟前
ZaZa完成签到,获得积分10
1分钟前
英姑应助顾建瑜采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
Criminology34应助科研通管家采纳,获得20
1分钟前
LL发布了新的文献求助10
1分钟前
2分钟前
nojego完成签到,获得积分10
2分钟前
2分钟前
兴奋秋珊发布了新的文献求助10
2分钟前
李健应助Zert采纳,获得10
2分钟前
充电宝应助xuan采纳,获得10
2分钟前
2分钟前
2分钟前
Zert发布了新的文献求助10
2分钟前
xuan发布了新的文献求助10
2分钟前
blenx完成签到,获得积分10
3分钟前
3分钟前
3分钟前
蔡浩天发布了新的文献求助10
3分钟前
蔡浩天完成签到,获得积分10
3分钟前
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
乐乐应助科研通管家采纳,获得10
3分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5346400
求助须知:如何正确求助?哪些是违规求助? 4481028
关于积分的说明 13947147
捐赠科研通 4378788
什么是DOI,文献DOI怎么找? 2406064
邀请新用户注册赠送积分活动 1398634
关于科研通互助平台的介绍 1371324