Challenges and Pitfalls of Research Designs involving Magnesium-Based Biomaterials: An Overview

生物材料 生物相容性 体内 生物医学工程 材料科学 纳米技术 医学 生物技术 生物 冶金
作者
Nourhan Hassan,Thomas Krieg,Alexander Kopp,Alexander D. Bach,Nadja Kröger
出处
期刊:International Journal of Molecular Sciences [Multidisciplinary Digital Publishing Institute]
卷期号:25 (11): 6242-6242
标识
DOI:10.3390/ijms25116242
摘要

Magnesium-based biomaterials hold remarkable promise for various clinical applications, offering advantages such as reduced stress-shielding and enhanced bone strengthening and vascular remodeling compared to traditional materials. However, ensuring the quality of preclinical research is crucial for the development of these implants. To achieve implant success, an understanding of the cellular responses post-implantation, proper model selection, and good study design are crucial. There are several challenges to reaching a safe and effective translation of laboratory findings into clinical practice. The utilization of Mg-based biomedical devices eliminates the need for biomaterial removal surgery post-healing and mitigates adverse effects associated with permanent biomaterial implantation. However, the high corrosion rate of Mg-based implants poses challenges such as unexpected degradation, structural failure, hydrogen evolution, alkalization, and cytotoxicity. The biocompatibility and degradability of materials based on magnesium have been studied by many researchers in vitro; however, evaluations addressing the impact of the material in vivo still need to be improved. Several animal models, including rats, rabbits, dogs, and pigs, have been explored to assess the potential of magnesium-based materials. Moreover, strategies such as alloying and coating have been identified to enhance the degradation rate of magnesium-based materials in vivo to transform these challenges into opportunities. This review aims to explore the utilization of Mg implants across various biomedical applications within cellular (in vitro) and animal (in vivo) models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大爱仙尊完成签到 ,获得积分10
刚刚
fugu0完成签到,获得积分10
1秒前
1秒前
1秒前
流觞曲水发布了新的文献求助10
2秒前
2秒前
1Yer6完成签到 ,获得积分10
2秒前
ada发布了新的文献求助10
3秒前
共享精神应助小小科研人采纳,获得10
4秒前
Sylvia完成签到,获得积分10
4秒前
00完成签到,获得积分20
6秒前
务实的菓完成签到 ,获得积分10
6秒前
吕健发布了新的文献求助10
7秒前
7秒前
果心纯完成签到,获得积分10
8秒前
8秒前
猜猜关注了科研通微信公众号
9秒前
Lin发布了新的文献求助10
9秒前
10秒前
自觉的火龙果完成签到,获得积分10
10秒前
十三同学完成签到,获得积分10
12秒前
12秒前
14秒前
14秒前
Lin完成签到,获得积分10
14秒前
样样子发布了新的文献求助10
15秒前
ll200207发布了新的文献求助10
17秒前
香蕉觅云应助奮斗采纳,获得10
18秒前
今后应助keyan采纳,获得10
18秒前
19秒前
19秒前
打打应助夜阑听风雨采纳,获得10
19秒前
00发布了新的文献求助10
20秒前
芝士完成签到 ,获得积分10
21秒前
uuh完成签到,获得积分10
21秒前
仁者完成签到,获得积分10
22秒前
可爱的函函应助达叔采纳,获得10
23秒前
23秒前
23秒前
26秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Maneuvering of a Damaged Navy Combatant 500
An International System for Human Cytogenomic Nomenclature (2024) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3769645
求助须知:如何正确求助?哪些是违规求助? 3314713
关于积分的说明 10173349
捐赠科研通 3030002
什么是DOI,文献DOI怎么找? 1662548
邀请新用户注册赠送积分活动 795036
科研通“疑难数据库(出版商)”最低求助积分说明 756500