Effect of variability of mechanical properties on the predictive capabilities of vulnerable coronary plaques

医学 易损斑块 心脏病学 内科学 舒张期 纤维帽 血压 放射科
作者
Marco Stefanati,Anna Corti,Valentina Corino,Martin R. Bennett,Zhongzhao Teng,Gabriele Dubini,José Félix Rodríguez Matas
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:254: 108271-108271 被引量:4
标识
DOI:10.1016/j.cmpb.2024.108271
摘要

Coronary plaque rupture is a precipitating event responsible for two thirds of myocardial infarctions. Currently, the risk of plaque rupture is computed based on demographic, clinical, and image-based adverse features. However, using these features the absolute event rate per single higher-risk lesion remains low. This work studies the power of a novel framework based on biomechanical markers accounting for material uncertainty to stratify vulnerable and non-vulnerable coronary plaques. Virtual histology intravascular ultrasounds from 55 patients, 29 affected by acute coronary syndrome and 26 affected by stable angina pectoris, were included in this study. Two-dimensional vessel cross-sections for finite element modeling (10 sections per plaque) incorporating plaque structure (medial tissue, loose matrix, lipid core and calcification) were reconstructed. A Montecarlo finite element analysis was performed on each section to account for material variability on three biomechanical markers: peak plaque structural stress at diastolic and systolic pressure, and peak plaque stress difference between systolic and diastolic pressures, together with the luminal pressure. Machine learning decision tree classifiers were trained on 75% of the dataset and tested on the remaining 25% with a combination of feature selection techniques. Performance against classification trees based on geometric markers (i.e., luminal, external elastic membrane and plaque areas) was also performed. Our results indicate that the plaque structural stress outperforms the classification capacity of the combined geometric markers only (0.82 vs 0.51 area under curve) when accounting for uncertainty in material parameters. Furthermore, the results suggest that the combination of the peak plaque structural stress at diastolic and systolic pressures with the maximum plaque structural stress difference between systolic and diastolic pressures together with the systolic pressure and the diastolic to systolic pressure gradient is a robust classifier for coronary plaques when the intrinsic variability in material parameters is considered (area under curve equal to [0.91–0.93]). In summary, our results emphasize that peak plaque structural stress in combination with the patient's luminal pressure is a potential classifier of plaque vulnerability as it independently considers stress in all directions and incorporates total geometric and compositional features of atherosclerotic plaques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
九木德完成签到 ,获得积分10
刚刚
脑洞疼应助XUAN采纳,获得10
刚刚
Mercury发布了新的文献求助10
2秒前
赵凌发布了新的文献求助10
2秒前
3秒前
孙意冉完成签到,获得积分10
5秒前
PATTOM发布了新的文献求助10
8秒前
8秒前
xixifu发布了新的文献求助10
8秒前
8秒前
Akim应助哩哩采纳,获得10
10秒前
11秒前
11秒前
干净南风发布了新的文献求助10
11秒前
12秒前
优美的跳跳糖完成签到 ,获得积分10
12秒前
xiaoxiaoz发布了新的文献求助10
15秒前
15秒前
liyu发布了新的文献求助10
15秒前
zhao完成签到 ,获得积分10
15秒前
15秒前
16秒前
16秒前
16秒前
玉梅发布了新的文献求助10
17秒前
科研通AI5应助干净南风采纳,获得10
17秒前
18秒前
木由子发布了新的文献求助10
19秒前
19秒前
wyiii完成签到,获得积分10
20秒前
XUAN发布了新的文献求助10
20秒前
华仔应助怕黑的雪莲采纳,获得10
21秒前
21秒前
21秒前
23秒前
lan发布了新的文献求助10
24秒前
shijie805发布了新的文献求助20
25秒前
小小菜鸟发布了新的文献求助10
27秒前
科研通AI6应助cherry采纳,获得10
28秒前
vungocbinh发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4624923
求助须知:如何正确求助?哪些是违规求助? 4024171
关于积分的说明 12456546
捐赠科研通 3708857
什么是DOI,文献DOI怎么找? 2045726
邀请新用户注册赠送积分活动 1077723
科研通“疑难数据库(出版商)”最低求助积分说明 960238