Exponential smoothing method against the gradient boosting machine learning algorithm-based model for materials forecasting to minimize inventory

指数平滑 Boosting(机器学习) 指数函数 计算机科学 梯度升压 平滑的 算法 人工智能 数学优化 机器学习 数学 随机森林 计算机视觉 数学分析
作者
T. Sathish,Divity SaiKumar,Shashwath Patil,R. Saravanan,Jayant Giri,Ayman A. Aly
出处
期刊:AIP Advances [American Institute of Physics]
卷期号:14 (6)
标识
DOI:10.1063/5.0208491
摘要

The optimization of resources and reduction of costs through efficient inventory management are paramount to organizational success. This study undertakes a comparative analysis of two distinct forecasting methodologies, Exponential Smoothing (ES) and Gradient Boosting (GB), within the framework of materials forecasting aimed at inventory minimization. Our study introduces innovation by methodically scrutinizing these approaches within a unified framework, shedding light on their merits and shortcomings. This comparative analysis gives practitioners a practical roadmap for the optimal forecasting strategy to streamline inventory management operations. Methodologies are evaluated based on their efficiency in predicting material demand, encompassing metrics such as accuracy, computational efficiency, and suitability across various inventory management scenarios. Response surface methodology entails refining processes to modify factorial variables’ configurations to attain a desired peak or trough in response. The SPSS results show that the ES method has 43.20%, surpassing the accuracy of the inventory optimization model, which stood at 65.08%. The response surface methodology results show that 45.20% profit was achieved for the variable and operational cost process parameters. This research seeks to unveil the traces of each method, facilitating decision-makers in selecting an optimal forecasting strategy tailored to their specific inventory management requirements. The analysis shows that the ES method surpasses the accuracy of the GB machine learning for material forecasting to minimize inventory.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助笑点低的碧琴采纳,获得10
刚刚
zcl应助z1z1z采纳,获得50
2秒前
希望天下0贩的0应助Zxc采纳,获得10
2秒前
湫殇发布了新的文献求助10
3秒前
算命先生完成签到,获得积分10
7秒前
云朵完成签到 ,获得积分20
8秒前
8秒前
8秒前
11秒前
高茵发布了新的文献求助10
12秒前
13秒前
wyp完成签到,获得积分10
13秒前
hh发布了新的文献求助10
13秒前
超级的啤酒完成签到,获得积分20
14秒前
cm发布了新的文献求助10
14秒前
14秒前
林珍发布了新的文献求助10
15秒前
谦让的冰海完成签到,获得积分10
16秒前
17秒前
17秒前
17秒前
Ali发布了新的文献求助10
18秒前
逝水完成签到 ,获得积分10
19秒前
cactus发布了新的文献求助10
20秒前
111完成签到,获得积分10
20秒前
超级如风完成签到,获得积分10
20秒前
景cc完成签到 ,获得积分10
20秒前
RED发布了新的文献求助10
21秒前
18276995909完成签到,获得积分10
21秒前
滔滔发布了新的文献求助10
21秒前
迷路思真完成签到,获得积分10
22秒前
扶南发布了新的文献求助10
22秒前
22秒前
22秒前
浮游应助蓝莓采纳,获得30
23秒前
聆听完成签到,获得积分10
23秒前
湫殇完成签到,获得积分20
25秒前
一只好果子完成签到,获得积分20
28秒前
222发布了新的文献求助10
28秒前
hh完成签到,获得积分20
31秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5206942
求助须知:如何正确求助?哪些是违规求助? 4385146
关于积分的说明 13655821
捐赠科研通 4243590
什么是DOI,文献DOI怎么找? 2328188
邀请新用户注册赠送积分活动 1325910
关于科研通互助平台的介绍 1278098