Exponential smoothing method against the gradient boosting machine learning algorithm-based model for materials forecasting to minimize inventory

指数平滑 Boosting(机器学习) 指数函数 计算机科学 梯度升压 平滑的 算法 人工智能 数学优化 机器学习 数学 随机森林 计算机视觉 数学分析
作者
T. Sathish,Divity SaiKumar,Shashwath Patil,R. Saravanan,Jayant Giri,Ayman A. Aly
出处
期刊:AIP Advances [American Institute of Physics]
卷期号:14 (6)
标识
DOI:10.1063/5.0208491
摘要

The optimization of resources and reduction of costs through efficient inventory management are paramount to organizational success. This study undertakes a comparative analysis of two distinct forecasting methodologies, Exponential Smoothing (ES) and Gradient Boosting (GB), within the framework of materials forecasting aimed at inventory minimization. Our study introduces innovation by methodically scrutinizing these approaches within a unified framework, shedding light on their merits and shortcomings. This comparative analysis gives practitioners a practical roadmap for the optimal forecasting strategy to streamline inventory management operations. Methodologies are evaluated based on their efficiency in predicting material demand, encompassing metrics such as accuracy, computational efficiency, and suitability across various inventory management scenarios. Response surface methodology entails refining processes to modify factorial variables’ configurations to attain a desired peak or trough in response. The SPSS results show that the ES method has 43.20%, surpassing the accuracy of the inventory optimization model, which stood at 65.08%. The response surface methodology results show that 45.20% profit was achieved for the variable and operational cost process parameters. This research seeks to unveil the traces of each method, facilitating decision-makers in selecting an optimal forecasting strategy tailored to their specific inventory management requirements. The analysis shows that the ES method surpasses the accuracy of the GB machine learning for material forecasting to minimize inventory.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
英姑应助VLH采纳,获得10
2秒前
2秒前
孤独的巨人完成签到,获得积分10
3秒前
3秒前
图图完成签到,获得积分10
4秒前
4秒前
电闪发布了新的文献求助10
5秒前
5秒前
852应助自觉的凛采纳,获得10
5秒前
活到老学到老完成签到,获得积分10
6秒前
SYLH应助肖雪依采纳,获得10
6秒前
禾之发布了新的文献求助10
6秒前
XXXp发布了新的文献求助10
6秒前
忧虑的初晴完成签到,获得积分10
7秒前
唐_发布了新的文献求助10
8秒前
大猫发布了新的文献求助50
8秒前
风趣谷秋发布了新的文献求助10
8秒前
3216完成签到,获得积分10
8秒前
ED应助图图采纳,获得10
9秒前
你猜猜看完成签到,获得积分10
9秒前
lulu完成签到,获得积分20
9秒前
A_goal发布了新的文献求助10
9秒前
9秒前
10秒前
Kaz发布了新的文献求助10
11秒前
11秒前
11秒前
李爱国应助电闪采纳,获得10
12秒前
12秒前
自觉的凛完成签到,获得积分10
13秒前
卢莹发布了新的文献求助10
13秒前
研友_VZG7GZ应助PLUTO_K22采纳,获得10
14秒前
胡志飞发布了新的文献求助10
14秒前
李爱国应助李若暄采纳,获得10
14秒前
阿西发布了新的文献求助10
14秒前
FANTA关注了科研通微信公众号
15秒前
16秒前
16秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962022
求助须知:如何正确求助?哪些是违规求助? 3508316
关于积分的说明 11140304
捐赠科研通 3240919
什么是DOI,文献DOI怎么找? 1791125
邀请新用户注册赠送积分活动 872741
科研通“疑难数据库(出版商)”最低求助积分说明 803352