Deciphering the environmental chemical basis of muscle quality decline by interpretable machine learning models

肌萎缩 全国健康与营养检查调查 机器学习 随机森林 质量(理念) 人工智能 接收机工作特性 二元分类 计算机科学 骨骼肌 老年学 医学 环境卫生 内科学 人口 支持向量机 哲学 认识论
作者
Zhen Feng,Ying’ao Chen,Yuxin Guo,Jie Lyu
出处
期刊:The American Journal of Clinical Nutrition [Elsevier BV]
卷期号:120 (2): 407-418 被引量:2
标识
DOI:10.1016/j.ajcnut.2024.05.022
摘要

Sarcopenia is known as a decline in skeletal muscle quality and function that is associated with age. Sarcopenia is linked to diverse health problems, including endocrine-related diseases. Environmental chemicals (ECs), a broad class of chemicals released from industry, may influence muscle quality decline. In our work, we aim to simultaneously elucidate the associations between muscle quality decline and diverse EC exposures based on the data from the 2011–2012 and 2013–2014 survey cycles in the National Health and Nutrition Examination Survey (NHANES) project using machine learning models. Six machine learning models were trained based on the EC and non-EC exposures from NHANES to distinguish low from normal muscle quality index status. Different machine learning metrics were evaluated for these models. The SHAP (SHapley Additive exPlanations) approach was used to provide explainability for machine learning models. Random Forest (RF) performed best on the independent testing dataset. Based on the testing dataset, ECs can independently predict the binary muscle quality status with good performance by RF (Area Under the Receiver Operating Characteristic Curve (AUROC) = 0.793, Area Under the Precision-Recall Curve (AUPRC) = 0.808). The SHAP ranked the importance of ECs for the RF model. As a result, several metals and chemicals in urine, including 3-phenoxybenzoic acid and cobalt, were more associated with the muscle quality decline. Altogether, our analyses suggest that ECs can independently predict muscle quality decline with a good performance by RF, and the SHAP-identified ECs can be closely related to muscle quality decline and sarcopenia. Our analyses may provide valuable insights into environmental chemicals that may be the important basis of sarcopenia and endocrine-related diseases in U.S. populations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
小二郎应助文静元霜采纳,获得10
3秒前
追马发布了新的文献求助10
6秒前
丘比特应助niu采纳,获得10
6秒前
7秒前
啊哈哈哈哈哈完成签到,获得积分10
8秒前
科研通AI2S应助msk采纳,获得10
8秒前
11秒前
DT完成签到 ,获得积分10
12秒前
苏翰英完成签到,获得积分10
13秒前
片小海完成签到,获得积分10
14秒前
16秒前
msk发布了新的文献求助10
19秒前
乐乐应助苏翰英采纳,获得10
20秒前
20秒前
PatrickWu发布了新的文献求助10
21秒前
22秒前
22秒前
善学以致用应助916采纳,获得10
23秒前
不会打野的小猫完成签到,获得积分10
24秒前
北彧发布了新的文献求助10
24秒前
25秒前
loong完成签到,获得积分20
25秒前
niu发布了新的文献求助10
27秒前
海风奕婕发布了新的文献求助10
27秒前
充电宝应助虚幻的不愁采纳,获得10
28秒前
赘婿应助扭扭车采纳,获得10
29秒前
zyzhnu完成签到,获得积分10
29秒前
华仔应助往返采纳,获得10
30秒前
ZZ发布了新的文献求助10
30秒前
Lp完成签到 ,获得积分10
31秒前
32秒前
zoe给zoe的求助进行了留言
33秒前
农场主完成签到,获得积分10
33秒前
junzhao发布了新的文献求助10
34秒前
米饭儿完成签到 ,获得积分10
34秒前
量子星尘发布了新的文献求助10
34秒前
34秒前
Jackcaosky完成签到 ,获得积分10
35秒前
所所应助邱鑫淼采纳,获得10
37秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979693
求助须知:如何正确求助?哪些是违规求助? 3523666
关于积分的说明 11218291
捐赠科研通 3261174
什么是DOI,文献DOI怎么找? 1800485
邀请新用户注册赠送积分活动 879103
科研通“疑难数据库(出版商)”最低求助积分说明 807167