亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deciphering the environmental chemical basis of muscle quality decline by interpretable machine learning models

肌萎缩 全国健康与营养检查调查 机器学习 随机森林 质量(理念) 人工智能 接收机工作特性 二元分类 计算机科学 骨骼肌 老年学 医学 环境卫生 内科学 人口 支持向量机 哲学 认识论
作者
Zhen Feng,Ying’ao Chen,Yuxin Guo,Jie Lyu
出处
期刊:The American Journal of Clinical Nutrition [Oxford University Press]
卷期号:120 (2): 407-418 被引量:2
标识
DOI:10.1016/j.ajcnut.2024.05.022
摘要

Sarcopenia is known as a decline in skeletal muscle quality and function that is associated with age. Sarcopenia is linked to diverse health problems, including endocrine-related diseases. Environmental chemicals (ECs), a broad class of chemicals released from industry, may influence muscle quality decline. In our work, we aim to simultaneously elucidate the associations between muscle quality decline and diverse EC exposures based on the data from the 2011–2012 and 2013–2014 survey cycles in the National Health and Nutrition Examination Survey (NHANES) project using machine learning models. Six machine learning models were trained based on the EC and non-EC exposures from NHANES to distinguish low from normal muscle quality index status. Different machine learning metrics were evaluated for these models. The SHAP (SHapley Additive exPlanations) approach was used to provide explainability for machine learning models. Random Forest (RF) performed best on the independent testing dataset. Based on the testing dataset, ECs can independently predict the binary muscle quality status with good performance by RF (Area Under the Receiver Operating Characteristic Curve (AUROC) = 0.793, Area Under the Precision-Recall Curve (AUPRC) = 0.808). The SHAP ranked the importance of ECs for the RF model. As a result, several metals and chemicals in urine, including 3-phenoxybenzoic acid and cobalt, were more associated with the muscle quality decline. Altogether, our analyses suggest that ECs can independently predict muscle quality decline with a good performance by RF, and the SHAP-identified ECs can be closely related to muscle quality decline and sarcopenia. Our analyses may provide valuable insights into environmental chemicals that may be the important basis of sarcopenia and endocrine-related diseases in U.S. populations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
liujingyi发布了新的文献求助10
16秒前
Lucas应助liujingyi采纳,获得10
23秒前
受伤的可愁完成签到 ,获得积分10
37秒前
yipmyonphu完成签到,获得积分10
47秒前
Perry完成签到,获得积分0
54秒前
1分钟前
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
CodeCraft应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
CodeCraft应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
1分钟前
在水一方应助yb采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
雪白的听寒完成签到 ,获得积分10
1分钟前
baibai发布了新的文献求助10
1分钟前
1分钟前
NiceSunnyDay完成签到 ,获得积分10
2分钟前
一只大嵩鼠完成签到 ,获得积分10
2分钟前
xzj完成签到 ,获得积分10
2分钟前
阳光迎夏完成签到 ,获得积分10
2分钟前
2分钟前
Ayra发布了新的文献求助10
2分钟前
阿翼完成签到 ,获得积分10
2分钟前
2分钟前
pm完成签到 ,获得积分10
2分钟前
勤恳的一刀完成签到,获得积分10
3分钟前
神仙没有草原完成签到,获得积分10
3分钟前
青青儿完成签到 ,获得积分10
3分钟前
3分钟前
null应助科研通管家采纳,获得10
3分钟前
null应助科研通管家采纳,获得10
3分钟前
null应助科研通管家采纳,获得10
3分钟前
null应助科研通管家采纳,获得10
3分钟前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
Modern Relationships 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5849764
求助须知:如何正确求助?哪些是违规求助? 6251336
关于积分的说明 15624748
捐赠科研通 4966137
什么是DOI,文献DOI怎么找? 2677780
邀请新用户注册赠送积分活动 1622107
关于科研通互助平台的介绍 1578186