Deciphering the environmental chemical basis of muscle quality decline by interpretable machine learning models

肌萎缩 全国健康与营养检查调查 机器学习 随机森林 质量(理念) 人工智能 接收机工作特性 二元分类 计算机科学 骨骼肌 老年学 医学 环境卫生 内科学 人口 支持向量机 哲学 认识论
作者
Zhen Feng,Ying’ao Chen,Yuxin Guo,Jie Lv
出处
期刊:The American Journal of Clinical Nutrition [Oxford University Press]
卷期号:120 (2): 407-418
标识
DOI:10.1016/j.ajcnut.2024.05.022
摘要

Sarcopenia is known as a decline in skeletal muscle quality and function that is associated with age. Sarcopenia is linked to diverse health problems, including endocrine-related diseases. Environmental chemicals (ECs), a broad class of chemicals released from industry, may influence muscle quality decline. In our work, we aim to simultaneously elucidate the associations between muscle quality decline and diverse EC exposures based on the data from the 2011–2012 and 2013–2014 survey cycles in the National Health and Nutrition Examination Survey (NHANES) project using machine learning models. Six machine learning models were trained based on the EC and non-EC exposures from NHANES to distinguish low from normal muscle quality index status. Different machine learning metrics were evaluated for these models. The SHAP (SHapley Additive exPlanations) approach was used to provide explainability for machine learning models. Random Forest (RF) performed best on the independent testing dataset. Based on the testing dataset, ECs can independently predict the binary muscle quality status with good performance by RF (Area Under the Receiver Operating Characteristic Curve (AUROC) = 0.793, Area Under the Precision-Recall Curve (AUPRC) = 0.808). The SHAP ranked the importance of ECs for the RF model. As a result, several metals and chemicals in urine, including 3-phenoxybenzoic acid and cobalt, were more associated with the muscle quality decline. Altogether, our analyses suggest that ECs can independently predict muscle quality decline with a good performance by RF, and the SHAP-identified ECs can be closely related to muscle quality decline and sarcopenia. Our analyses may provide valuable insights into environmental chemicals that may be the important basis of sarcopenia and endocrine-related diseases in U.S. populations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
youger发布了新的文献求助10
1秒前
田様应助赵某人采纳,获得10
2秒前
扣子发布了新的文献求助10
3秒前
15122303完成签到,获得积分10
4秒前
孤僻发布了新的文献求助10
5秒前
shinysparrow应助nenoaowu采纳,获得210
6秒前
iNk应助xzy998采纳,获得10
7秒前
Lyrica完成签到 ,获得积分10
8秒前
8秒前
9秒前
iridium完成签到,获得积分10
9秒前
Jun完成签到,获得积分10
10秒前
寻道图强应助火星上香菇采纳,获得30
12秒前
不配.应助贲半梦采纳,获得10
12秒前
12秒前
十泱完成签到 ,获得积分10
13秒前
鱼腩发布了新的文献求助10
13秒前
Lyric完成签到,获得积分10
14秒前
16秒前
ureil发布了新的文献求助10
16秒前
Akim应助spirit采纳,获得10
17秒前
xiexiaopa发布了新的文献求助10
17秒前
17秒前
17秒前
17秒前
18秒前
19秒前
爱静静应助跳跃野狼采纳,获得10
20秒前
20秒前
大模型应助youger采纳,获得10
20秒前
21秒前
21秒前
lele发布了新的文献求助10
21秒前
22秒前
饱满绮波完成签到 ,获得积分10
22秒前
22秒前
Anna发布了新的文献求助10
23秒前
鳗鱼元冬发布了新的文献求助10
24秒前
天天天才发布了新的文献求助10
24秒前
xjcy应助xzy998采纳,获得10
26秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137977
求助须知:如何正确求助?哪些是违规求助? 2788926
关于积分的说明 7789136
捐赠科研通 2445326
什么是DOI,文献DOI怎么找? 1300288
科研通“疑难数据库(出版商)”最低求助积分说明 625878
版权声明 601046