Breakthrough in atmospheric plasma spraying of high-density composite electrolytes: Deposition behavior and performance of plasma-sprayed GDC-LSGM on porous metal-supported solid oxide fuel cells

材料科学 沉积(地质) 等离子体 电解质 多孔性 氧化物 复合数 化学工程 金属 冶金 复合材料 化学 电极 物理化学 量子力学 生物 物理 工程类 古生物学 沉积物
作者
Ziyang Chen,Xiangwu Zhang,Yan-neng Liang,Zaheer Ud Din Babar,JiuTao Gao,Wanming Li,Shan-Lin Zhang,Chang‐Jiu Li,Cheng‐Xin Li
出处
期刊:International Journal of Hydrogen Energy [Elsevier]
卷期号:72: 614-625 被引量:5
标识
DOI:10.1016/j.ijhydene.2024.05.346
摘要

The potential application of plasma spraying in the preparation of ceramic electrolyte for porous metal-supported solid oxide fuel cells (SOFCs) is highlighted by its ability to eliminate the need for a high-temperature sintering process. However, the challenge of achieving highly dense electrolytes through plasma spraying remains to be addressed. In this study, a novel electrolyte for porous metal-supported SOFCs (PMS-SOFCs) is developed. This involved the preparation of a highly dense structure of gadolinium-doped ceria (GDC)-lanthanum strontium gallium magnesium oxide (LSGM) composite coating using plasma spraying under atmospheric conditions. The composite electrolyte is prepared using atmospheric plasma spraying (APS). The addition of the low-melting-point LSGM phase enhanced the microstructural densification of the GDC-based composite coating and diminished electron loss in a reducing atmosphere, thereby improving the cell's open-circuit voltage. At 36 kW plasma arc power, the single cell with composite electrolyte exhibited a maximum power density of 371 mw/cm2 at 750 °C and achieved the highest open-circuit voltage (1.03 V) at 600 °C. Moreover, the open-circuit voltage remained stable over a 100-h test. These findings suggest that using APS to deposit a composite electrolyte with added low-melting-point secondary phases presents a promising approach for achieving relatively high OCV in PMS-SOFCs based on cerium oxide electrolytes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
魔幻友菱完成签到 ,获得积分10
1秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
TGU的小马同学完成签到 ,获得积分10
3秒前
zhangj696完成签到,获得积分10
3秒前
烧仙草之完成签到 ,获得积分10
4秒前
淡淡的凡完成签到 ,获得积分10
5秒前
xu完成签到 ,获得积分10
5秒前
6秒前
丰富的白开水完成签到,获得积分10
8秒前
科研通AI6应助ziyue采纳,获得10
10秒前
路人甲完成签到,获得积分10
10秒前
bill完成签到,获得积分10
11秒前
丑小鸭完成签到,获得积分10
12秒前
13秒前
隐形曼青应助丑小鸭采纳,获得10
14秒前
如意的尔蝶完成签到,获得积分10
16秒前
淡然的剑通完成签到 ,获得积分10
16秒前
fomo完成签到,获得积分10
18秒前
大模型应助jankac采纳,获得10
19秒前
秋殤完成签到 ,获得积分10
21秒前
完美梦之完成签到,获得积分10
22秒前
健壮洋葱完成签到 ,获得积分10
24秒前
luis完成签到 ,获得积分10
26秒前
shilly完成签到 ,获得积分10
26秒前
开放飞阳完成签到,获得积分10
26秒前
MISA完成签到 ,获得积分10
26秒前
26秒前
量子星尘发布了新的文献求助10
28秒前
Owen应助稳重的千凝采纳,获得10
29秒前
进击的PhD应助阿拉采纳,获得50
31秒前
sule完成签到,获得积分10
31秒前
jscr完成签到,获得积分10
32秒前
Polylactic完成签到 ,获得积分10
32秒前
米小罗完成签到 ,获得积分10
40秒前
jankac完成签到 ,获得积分20
40秒前
量子星尘发布了新的文献求助10
42秒前
45秒前
CLTTTt完成签到,获得积分10
46秒前
Eric完成签到,获得积分10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645089
求助须知:如何正确求助?哪些是违规求助? 4767716
关于积分的说明 15026372
捐赠科研通 4803503
什么是DOI,文献DOI怎么找? 2568340
邀请新用户注册赠送积分活动 1525697
关于科研通互助平台的介绍 1485301