亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

224 An actionable, explainable, and biologically plausible AI-ECG risk estimation platform for diabetes mellitus

一致性 生命银行 医学 全基因组关联研究 糖尿病 内科学 生物信息学 基因型 单核苷酸多态性 生物 内分泌学 生物化学 基因
作者
Libor Pastika,Arunashis Sau,Ewa Sieliwończyk,Konstantinos Patlatzoglou,Kathryn A. McGurk,Sadia Khan,Danilo P. Mandic,James S. Ware,Nicholas S. Peters,Daniel B. Kramer,Jonathan W. Waks,Fu Siong Ng
标识
DOI:10.1136/heartjnl-2024-bcs.216
摘要

Background

With the rising incidence of Type 2 Diabetes Mellitus (T2DM) and the number of undiagnosed cases, there is an urgent need for innovative strategies for early identification of individuals at higher risk. To address this, we explore the utility of deep learning applied to 12-lead electrocardiograms (ECGs) for predicting the risk of incident T2DM in non-diabetic individuals, offering a novel approach for early detection and risk stratification.

Methods

The AI-ECG model, developed on the Beth Israel Deaconess Medical Center (BIDMC) dataset of 1.1 million ECGs and externally validated in the UK Biobank (UKB, N = 65,606), employs a residual neural network architecture tailored for a discrete-time survival model. Model performance was evaluated using the concordance index (C-index), and its enhancement of traditional risk factors was assessed via likelihood ratio tests (LRT) and net reclassification index (NRI). We also explored associations with clinical and echocardiographic features through a phenome-wide association study (PheWAS), and with genetic loci through a genome-wide association study (GWAS).

Results

The model predicted future T2DM in non-diabetic outpatient individuals with a C-index of 0.666 (0.658–0.675) in BIDMC and 0.689 (0.663–0.715) in UKB. The model showed consistent performance in both sexes, across ethnic groups, and BMI categories, except for patients aged ≥ 65. An improved performance was noted in individuals aged < 65, with a C-index of 0.691 (0.681, 0.701) and 0.765 (0.730, 0.797) in UKB. Adding the AI-ECG model to age, sex, BMI, and ECG parameters significantly enhanced predictive accuracy in the BIDMC cohort (p < 0.0001). Similarly, adding the model to the American Diabetes Association (ADA) risk score in the UKB substantially improved predictive accuracy (p < 0.0001). The continuous Net Reclassification Improvement (NRI) was 0.30 (0.22–0.40) for the BIDMC and 0.35 (0.21–0.47) for the UKB. The PheWAS and echocardiographic analyses identified significant associations between model predictions and a range of cardiac and non-cardiac phenotypes, including lipid profiles, glycaemic control, blood pressure, as well as echocardiographic measures of cardiac structure and function. This was substantiated by the GWAS study, highlighting genes associated with left ventricular structure, left atrial function, myocardial mass, blood pressure, T2DM, and HbA1C.

Conclusion

We have developed an AI-ECG model capable of predicting the risk of future T2DM in non-diabetic outpatient populations, validated in both primary and secondary care cohorts. The model enhances T2DM risk prediction and stratification when integrated with traditional risk factors and scores. Its application in primary care settings holds promise for the early identification of individuals at higher risk of T2DM, enabling timely interventions and personalised management.

Conflict of Interest

None

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烂漫的篮球完成签到 ,获得积分10
1秒前
光亮的半山完成签到,获得积分10
22秒前
小汪爱学习完成签到,获得积分10
28秒前
28秒前
32秒前
完美世界应助刻苦诗双采纳,获得10
34秒前
不复返的杆完成签到 ,获得积分10
44秒前
俭朴蜜蜂完成签到 ,获得积分10
54秒前
福尔摩环完成签到,获得积分10
56秒前
瑾木完成签到,获得积分10
1分钟前
斯文败类应助Cherry采纳,获得10
1分钟前
高兴凝安完成签到 ,获得积分10
1分钟前
Rn完成签到 ,获得积分10
1分钟前
1分钟前
VDC应助科研通管家采纳,获得30
1分钟前
1分钟前
在水一方应助笑点低寻凝采纳,获得10
2分钟前
ya关注了科研通微信公众号
2分钟前
2分钟前
NexusExplorer应助渣渣辉采纳,获得10
2分钟前
2分钟前
mmyhn完成签到,获得积分10
2分钟前
2分钟前
ya发布了新的文献求助50
2分钟前
2分钟前
2分钟前
刻苦诗双发布了新的文献求助10
2分钟前
Cherry发布了新的文献求助10
3分钟前
3分钟前
檀123完成签到 ,获得积分10
3分钟前
刻苦诗双完成签到,获得积分10
3分钟前
Cherry完成签到,获得积分10
3分钟前
学时习完成签到 ,获得积分10
3分钟前
耿宇航完成签到 ,获得积分10
3分钟前
3分钟前
执念完成签到 ,获得积分10
3分钟前
张行完成签到,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
VDC应助科研通管家采纳,获得30
3分钟前
3分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 850
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248737
求助须知:如何正确求助?哪些是违规求助? 2892201
关于积分的说明 8270138
捐赠科研通 2560300
什么是DOI,文献DOI怎么找? 1388970
科研通“疑难数据库(出版商)”最低求助积分说明 650927
邀请新用户注册赠送积分活动 627850