已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

224 An actionable, explainable, and biologically plausible AI-ECG risk estimation platform for diabetes mellitus

一致性 生命银行 医学 全基因组关联研究 糖尿病 内科学 生物信息学 基因型 单核苷酸多态性 生物 内分泌学 生物化学 基因
作者
Libor Pastika,Arunashis Sau,Ewa Sieliwończyk,Konstantinos Patlatzoglou,Kathryn A. McGurk,Sadia Khan,Danilo P. Mandic,James S. Ware,Nicholas S. Peters,Daniel B. Kramer,Jonathan W. Waks,Fu Siong Ng
标识
DOI:10.1136/heartjnl-2024-bcs.216
摘要

Background

With the rising incidence of Type 2 Diabetes Mellitus (T2DM) and the number of undiagnosed cases, there is an urgent need for innovative strategies for early identification of individuals at higher risk. To address this, we explore the utility of deep learning applied to 12-lead electrocardiograms (ECGs) for predicting the risk of incident T2DM in non-diabetic individuals, offering a novel approach for early detection and risk stratification.

Methods

The AI-ECG model, developed on the Beth Israel Deaconess Medical Center (BIDMC) dataset of 1.1 million ECGs and externally validated in the UK Biobank (UKB, N = 65,606), employs a residual neural network architecture tailored for a discrete-time survival model. Model performance was evaluated using the concordance index (C-index), and its enhancement of traditional risk factors was assessed via likelihood ratio tests (LRT) and net reclassification index (NRI). We also explored associations with clinical and echocardiographic features through a phenome-wide association study (PheWAS), and with genetic loci through a genome-wide association study (GWAS).

Results

The model predicted future T2DM in non-diabetic outpatient individuals with a C-index of 0.666 (0.658–0.675) in BIDMC and 0.689 (0.663–0.715) in UKB. The model showed consistent performance in both sexes, across ethnic groups, and BMI categories, except for patients aged ≥ 65. An improved performance was noted in individuals aged < 65, with a C-index of 0.691 (0.681, 0.701) and 0.765 (0.730, 0.797) in UKB. Adding the AI-ECG model to age, sex, BMI, and ECG parameters significantly enhanced predictive accuracy in the BIDMC cohort (p < 0.0001). Similarly, adding the model to the American Diabetes Association (ADA) risk score in the UKB substantially improved predictive accuracy (p < 0.0001). The continuous Net Reclassification Improvement (NRI) was 0.30 (0.22–0.40) for the BIDMC and 0.35 (0.21–0.47) for the UKB. The PheWAS and echocardiographic analyses identified significant associations between model predictions and a range of cardiac and non-cardiac phenotypes, including lipid profiles, glycaemic control, blood pressure, as well as echocardiographic measures of cardiac structure and function. This was substantiated by the GWAS study, highlighting genes associated with left ventricular structure, left atrial function, myocardial mass, blood pressure, T2DM, and HbA1C.

Conclusion

We have developed an AI-ECG model capable of predicting the risk of future T2DM in non-diabetic outpatient populations, validated in both primary and secondary care cohorts. The model enhances T2DM risk prediction and stratification when integrated with traditional risk factors and scores. Its application in primary care settings holds promise for the early identification of individuals at higher risk of T2DM, enabling timely interventions and personalised management.

Conflict of Interest

None
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助铁甲小宝采纳,获得10
1秒前
woowoo发布了新的文献求助50
3秒前
寻雾启事完成签到,获得积分10
4秒前
6秒前
胖莹完成签到 ,获得积分10
7秒前
8秒前
研友_VZG7GZ应助大方明杰采纳,获得10
9秒前
周志轩66发布了新的文献求助10
9秒前
10秒前
10秒前
深情安青应助小巧谷波采纳,获得10
11秒前
852应助xxxx采纳,获得10
13秒前
deng发布了新的文献求助10
14秒前
不知道完成签到 ,获得积分10
15秒前
Sebastian完成签到,获得积分10
18秒前
deng完成签到,获得积分20
22秒前
CodeCraft应助杜客采纳,获得10
22秒前
24秒前
66289完成签到 ,获得积分10
24秒前
hyc完成签到,获得积分10
24秒前
25秒前
28秒前
MDZZZZZ发布了新的文献求助10
30秒前
陈三三完成签到,获得积分10
30秒前
322628发布了新的文献求助10
31秒前
32秒前
32秒前
蕊蕊蕊完成签到 ,获得积分10
35秒前
香蕉觅云应助祁尒采纳,获得10
36秒前
dudu发布了新的文献求助10
37秒前
39秒前
Joyce完成签到,获得积分10
40秒前
44秒前
45秒前
lzt完成签到 ,获得积分10
47秒前
大帅哥发布了新的文献求助10
49秒前
有魅力的沧海完成签到 ,获得积分10
51秒前
53秒前
今后应助大帅哥采纳,获得10
55秒前
57秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956848
求助须知:如何正确求助?哪些是违规求助? 3502916
关于积分的说明 11110677
捐赠科研通 3233882
什么是DOI,文献DOI怎么找? 1787655
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802191