224 An actionable, explainable, and biologically plausible AI-ECG risk estimation platform for diabetes mellitus

一致性 生命银行 医学 全基因组关联研究 糖尿病 内科学 生物信息学 基因型 单核苷酸多态性 生物 内分泌学 生物化学 基因
作者
Libor Pastika,Arunashis Sau,Ewa Sieliwończyk,Konstantinos Patlatzoglou,Kathryn A. McGurk,Sadia Khan,Danilo P. Mandic,James S. Ware,Nicholas S. Peters,Daniel B. Kramer,Jonathan W. Waks,Fu Siong Ng
标识
DOI:10.1136/heartjnl-2024-bcs.216
摘要

Background

With the rising incidence of Type 2 Diabetes Mellitus (T2DM) and the number of undiagnosed cases, there is an urgent need for innovative strategies for early identification of individuals at higher risk. To address this, we explore the utility of deep learning applied to 12-lead electrocardiograms (ECGs) for predicting the risk of incident T2DM in non-diabetic individuals, offering a novel approach for early detection and risk stratification.

Methods

The AI-ECG model, developed on the Beth Israel Deaconess Medical Center (BIDMC) dataset of 1.1 million ECGs and externally validated in the UK Biobank (UKB, N = 65,606), employs a residual neural network architecture tailored for a discrete-time survival model. Model performance was evaluated using the concordance index (C-index), and its enhancement of traditional risk factors was assessed via likelihood ratio tests (LRT) and net reclassification index (NRI). We also explored associations with clinical and echocardiographic features through a phenome-wide association study (PheWAS), and with genetic loci through a genome-wide association study (GWAS).

Results

The model predicted future T2DM in non-diabetic outpatient individuals with a C-index of 0.666 (0.658–0.675) in BIDMC and 0.689 (0.663–0.715) in UKB. The model showed consistent performance in both sexes, across ethnic groups, and BMI categories, except for patients aged ≥ 65. An improved performance was noted in individuals aged < 65, with a C-index of 0.691 (0.681, 0.701) and 0.765 (0.730, 0.797) in UKB. Adding the AI-ECG model to age, sex, BMI, and ECG parameters significantly enhanced predictive accuracy in the BIDMC cohort (p < 0.0001). Similarly, adding the model to the American Diabetes Association (ADA) risk score in the UKB substantially improved predictive accuracy (p < 0.0001). The continuous Net Reclassification Improvement (NRI) was 0.30 (0.22–0.40) for the BIDMC and 0.35 (0.21–0.47) for the UKB. The PheWAS and echocardiographic analyses identified significant associations between model predictions and a range of cardiac and non-cardiac phenotypes, including lipid profiles, glycaemic control, blood pressure, as well as echocardiographic measures of cardiac structure and function. This was substantiated by the GWAS study, highlighting genes associated with left ventricular structure, left atrial function, myocardial mass, blood pressure, T2DM, and HbA1C.

Conclusion

We have developed an AI-ECG model capable of predicting the risk of future T2DM in non-diabetic outpatient populations, validated in both primary and secondary care cohorts. The model enhances T2DM risk prediction and stratification when integrated with traditional risk factors and scores. Its application in primary care settings holds promise for the early identification of individuals at higher risk of T2DM, enabling timely interventions and personalised management.

Conflict of Interest

None
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
卢健辉发布了新的文献求助10
1秒前
2秒前
cookie完成签到,获得积分10
2秒前
JMZ完成签到 ,获得积分10
4秒前
英姑应助星星采纳,获得10
4秒前
spurs17发布了新的文献求助30
5秒前
LH完成签到,获得积分10
5秒前
CodeCraft应助Island采纳,获得10
6秒前
annis完成签到,获得积分10
6秒前
小黄应助asir_xw采纳,获得10
7秒前
认真的rain完成签到,获得积分10
7秒前
糊涂的小伙完成签到,获得积分10
8秒前
芒果豆豆完成签到,获得积分10
8秒前
赎罪完成签到 ,获得积分10
9秒前
卢健辉完成签到,获得积分10
9秒前
9秒前
10秒前
负责的中道完成签到,获得积分10
11秒前
dyh6802发布了新的文献求助10
11秒前
儒雅八宝粥完成签到 ,获得积分10
11秒前
深情安青应助科研小菜鸟采纳,获得10
12秒前
姜灭绝完成签到,获得积分10
12秒前
三七二一完成签到,获得积分10
12秒前
13秒前
大方的寒烟完成签到,获得积分10
14秒前
16秒前
橘寄完成签到,获得积分10
16秒前
请叫我风吹麦浪应助mito采纳,获得10
17秒前
Smallhei完成签到,获得积分10
17秒前
18秒前
111111111完成签到,获得积分20
18秒前
19秒前
阿牛完成签到,获得积分20
20秒前
21秒前
111111111发布了新的文献求助10
22秒前
22秒前
22秒前
龙华之士完成签到,获得积分10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808