Emerging MXene-based electrocatalysts for efficient nitrate reduction to ammonia: recent advance, challenges, and prospects

硝酸盐 还原(数学) 纳米技术 材料科学 环境科学 化学 有机化学 几何学 数学
作者
Zhijie Cui,Chunli Li,Wenchao Peng,Jiapeng Liu
出处
期刊:Energy materials [OAE Publishing Inc.]
卷期号:4 (5)
标识
DOI:10.20517/energymater.2023.134
摘要

Ammonia (NH3) plays an irreplaceable role in traditional agriculture and emerging renewable energy. Its preparation in industry mainly relies on the energy-intensive Haber-Bosch process, which is associated with high energy consumption and large CO2 emissions. Recently, the nitrate reduction reaction (NO3-RR) driven by renewable energy has received extensive attention. This reaction can efficiently synthesize NH3 with water as a hydrogen source and NO3- as a nitrogen source under mild conditions, which is conducive to reducing energy consumption and promoting the carbon cycle. It is well known that the properties of electrocatalysts determine the performance of NO3-RR. As an emerging two-dimensional material, MXenes (transition metal carbides/nitrides/carbon nitrides) possess excellent electrical conductivity, large specific surface area and controllable surface functional groups, which shows great application potential in the field of NO3-RR. Herein, this review summarized the structure, properties and synthesis strategies of MXenes to elucidate the possibilities from foundation to application. Then, the latest research progress in applying MXene-based electrocatalysts to NO3-RR was summarized and the applicability of different NH3 detection methods was analyzed. Finally, the present challenges and future prospects of NO3-RR were presented. This review aimed to provide thoughtful insights into the rational design of MXene-based electrocatalysts for sustainable NH3 synthesis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助Apple采纳,获得10
1秒前
周华强发布了新的文献求助10
1秒前
阿莫仙发布了新的文献求助10
2秒前
光明磊落完成签到,获得积分10
4秒前
lkf完成签到,获得积分10
4秒前
4秒前
可爱的函函应助孤独靖柏采纳,获得10
4秒前
保安发布了新的文献求助30
4秒前
professor_J完成签到,获得积分10
4秒前
6秒前
隐形曼青应助wind采纳,获得10
7秒前
xiaoliuyaouli发布了新的文献求助10
9秒前
阿莫仙完成签到,获得积分10
10秒前
10秒前
10秒前
嗷呜嗷呜发布了新的文献求助10
11秒前
aries发布了新的文献求助10
11秒前
虚心的海雪完成签到 ,获得积分10
11秒前
13秒前
13秒前
keke发布了新的文献求助10
14秒前
15秒前
研友_VZG7GZ应助Aurora采纳,获得10
15秒前
小春卷发布了新的文献求助10
16秒前
吨吨吨发布了新的文献求助10
17秒前
17秒前
17秒前
孤独靖柏发布了新的文献求助10
17秒前
19秒前
自由从筠完成签到 ,获得积分10
19秒前
完美世界应助xiaoliuyaouli采纳,获得10
19秒前
入秋的杰尼龟完成签到,获得积分10
19秒前
orixero应助纪震宇采纳,获得10
20秒前
巴布鲁斯发布了新的文献求助10
21秒前
black_cavalry完成签到,获得积分10
21秒前
超级幻然发布了新的文献求助10
22秒前
机灵千万完成签到,获得积分10
22秒前
风中天宇完成签到 ,获得积分20
23秒前
让一让完成签到,获得积分10
23秒前
healer发布了新的文献求助10
23秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129605
求助须知:如何正确求助?哪些是违规求助? 2780380
关于积分的说明 7747647
捐赠科研通 2435666
什么是DOI,文献DOI怎么找? 1294216
科研通“疑难数据库(出版商)”最低求助积分说明 623601
版权声明 600570