A Principle Design of Registration-Fusion Consistency: Toward Interpretable Deep Unregistered Hyperspectral Image Fusion

高光谱成像 融合 一致性(知识库) 人工智能 图像融合 图像配准 传感器融合 计算机视觉 计算机科学 模式识别(心理学) 图像(数学) 哲学 语言学
作者
Jiahui Qu,Jingyu Cui,Wenqian Dong,Qian Du,Xiaoyang Wu,Song Xiao,Yunsong Li
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2024.3412528
摘要

For hyperspectral image (HSI) and multispectral image (MSI) fusion, it is often overlooked that multisource images acquired under different imaging conditions are difficult to be perfectly registered. Although some works attempt to fuse unregistered images, two thorny challenges remain. One is that registration and fusion are usually modeled as two independent tasks, and there is no yet a unified physical model to tightly couple them. Another is that deep learning (DL)-based methods may lack sufficient interpretability and generalization. In response to the above challenges, we propose an unregistered HSI fusion framework energized by a unified model of registration and fusion. First, a novel registration-fusion consistency physical perception model (RFCM) is designed, which uniformly models the image registration and fusion problem to greatly reduce the sensitivity of fusion performance to registration accuracy. Then, an HSI fusion framework (MoE-PNP) is proposed to learn the knowledge reasoning process for solving RFCM. Each basic module of MoE-PNP one-to-one corresponds to the operation in the optimization algorithm of RFCM, which can ensure clear interpretability of the network. Moreover, MoE-PNP captures the general fusion principle for different unregistered images and therefore has good generalization. Extensive experiments demonstrate that MoE-PNP achieves state-of-the-art performance for unregistered HSI and MSI fusion. The code is available at https://github.com/Jiahuiqu/MoE-PNP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ardejiang发布了新的文献求助10
3秒前
尾生即是尾声完成签到,获得积分10
3秒前
4秒前
4秒前
foreverer发布了新的文献求助10
4秒前
6秒前
chunyan_sysu发布了新的文献求助10
7秒前
王伟发布了新的文献求助10
10秒前
10秒前
承宇发布了新的文献求助10
11秒前
12秒前
spring完成签到 ,获得积分10
12秒前
13秒前
angelsknight完成签到,获得积分10
14秒前
16秒前
17秒前
柠檬发布了新的文献求助10
17秒前
17秒前
彭于晏应助怕孤独的访梦采纳,获得10
17秒前
CipherSage应助平常竹采纳,获得10
17秒前
由由发布了新的文献求助10
18秒前
Anonymous发布了新的文献求助10
18秒前
bibi发布了新的文献求助30
20秒前
酷酷紫夏发布了新的文献求助20
21秒前
施含莲发布了新的文献求助10
22秒前
心灵美的寄柔完成签到,获得积分10
23秒前
VDC应助故意的傲玉采纳,获得30
23秒前
将将发布了新的文献求助10
23秒前
24秒前
24秒前
无花果应助眼睛大鹤采纳,获得10
25秒前
HEIKU应助tsttst采纳,获得10
26秒前
26秒前
不配.应助Aroma采纳,获得20
27秒前
28秒前
30秒前
31秒前
xuehan发布了新的文献求助10
32秒前
33秒前
ding应助科研通管家采纳,获得10
33秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234215
求助须知:如何正确求助?哪些是违规求助? 2880628
关于积分的说明 8216267
捐赠科研通 2548212
什么是DOI,文献DOI怎么找? 1377613
科研通“疑难数据库(出版商)”最低求助积分说明 647925
邀请新用户注册赠送积分活动 623302