A Principle Design of Registration-Fusion Consistency: Toward Interpretable Deep Unregistered Hyperspectral Image Fusion

高光谱成像 融合 一致性(知识库) 人工智能 图像融合 图像配准 传感器融合 计算机视觉 计算机科学 模式识别(心理学) 图像(数学) 哲学 语言学
作者
Jiahui Qu,Jizhou Cui,Wenqian Dong,Qian Du,Xiaoyang Wu,Song Xiao,Yunsong Li
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2024.3412528
摘要

For hyperspectral image (HSI) and multispectral image (MSI) fusion, it is often overlooked that multisource images acquired under different imaging conditions are difficult to be perfectly registered. Although some works attempt to fuse unregistered images, two thorny challenges remain. One is that registration and fusion are usually modeled as two independent tasks, and there is no yet a unified physical model to tightly couple them. Another is that deep learning (DL)-based methods may lack sufficient interpretability and generalization. In response to the above challenges, we propose an unregistered HSI fusion framework energized by a unified model of registration and fusion. First, a novel registration-fusion consistency physical perception model (RFCM) is designed, which uniformly models the image registration and fusion problem to greatly reduce the sensitivity of fusion performance to registration accuracy. Then, an HSI fusion framework (MoE-PNP) is proposed to learn the knowledge reasoning process for solving RFCM. Each basic module of MoE-PNP one-to-one corresponds to the operation in the optimization algorithm of RFCM, which can ensure clear interpretability of the network. Moreover, MoE-PNP captures the general fusion principle for different unregistered images and therefore has good generalization. Extensive experiments demonstrate that MoE-PNP achieves state-of-the-art performance for unregistered HSI and MSI fusion. The code is available at https://github.com/Jiahuiqu/MoE-PNP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风趣过客发布了新的文献求助10
刚刚
QDU发布了新的文献求助10
刚刚
1秒前
5321发布了新的文献求助10
6秒前
彭于晏应助Xin采纳,获得10
6秒前
9秒前
打打应助相信柯学采纳,获得10
10秒前
阳光的紊完成签到,获得积分10
11秒前
顾矜应助乐观沛白采纳,获得10
14秒前
14秒前
太阳花发布了新的文献求助10
15秒前
舍曲林发布了新的文献求助10
16秒前
SHAO应助科研通管家采纳,获得10
18秒前
Lucas应助科研通管家采纳,获得10
18秒前
地表飞猪应助科研通管家采纳,获得10
18秒前
酷波er应助科研通管家采纳,获得10
18秒前
Hello应助科研通管家采纳,获得10
18秒前
田様应助科研通管家采纳,获得10
18秒前
ED应助科研通管家采纳,获得10
18秒前
彭于晏应助科研通管家采纳,获得30
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
大模型应助科研通管家采纳,获得10
18秒前
大模型应助科研通管家采纳,获得10
18秒前
SYLH应助科研通管家采纳,获得30
18秒前
星辰大海应助科研通管家采纳,获得30
19秒前
24秒前
lxp发布了新的文献求助30
28秒前
31秒前
大模型应助lxp采纳,获得10
34秒前
放倒巨大豆蔓完成签到 ,获得积分10
35秒前
牛文文发布了新的文献求助10
36秒前
ztl完成签到 ,获得积分10
39秒前
xkxkii发布了新的文献求助10
40秒前
lc发布了新的文献求助10
40秒前
Akim应助丹妮采纳,获得10
42秒前
李木子完成签到 ,获得积分10
45秒前
可爱的函函应助牛文文采纳,获得10
46秒前
50秒前
冷艳的道天完成签到 ,获得积分10
50秒前
52秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993097
求助须知:如何正确求助?哪些是违规求助? 3534001
关于积分的说明 11264347
捐赠科研通 3273705
什么是DOI,文献DOI怎么找? 1806142
邀请新用户注册赠送积分活动 883003
科研通“疑难数据库(出版商)”最低求助积分说明 809652