A Principle Design of Registration-Fusion Consistency: Toward Interpretable Deep Unregistered Hyperspectral Image Fusion

可解释性 融合 一致性(知识库) 人工智能 图像融合 一般化 图像配准 计算机视觉 计算机科学 保险丝(电气) 过程(计算) 模式识别(心理学) 图像(数学) 数学 工程类 语言学 哲学 数学分析 电气工程 操作系统
作者
Jiahui Qu,Jizhou Cui,Wenqian Dong,Qian Du,Xiaoyang Wu,Song Xiao,Yunsong Li
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (5): 9648-9662 被引量:6
标识
DOI:10.1109/tnnls.2024.3412528
摘要

For hyperspectral image (HSI) and multispectral image (MSI) fusion, it is often overlooked that multisource images acquired under different imaging conditions are difficult to be perfectly registered. Although some works attempt to fuse unregistered images, two thorny challenges remain. One is that registration and fusion are usually modeled as two independent tasks, and there is no yet a unified physical model to tightly couple them. Another is that deep learning (DL)-based methods may lack sufficient interpretability and generalization. In response to the above challenges, we propose an unregistered HSI fusion framework energized by a unified model of registration and fusion. First, a novel registration-fusion consistency physical perception model (RFCM) is designed, which uniformly models the image registration and fusion problem to greatly reduce the sensitivity of fusion performance to registration accuracy. Then, an HSI fusion framework (MoE-PNP) is proposed to learn the knowledge reasoning process for solving RFCM. Each basic module of MoE-PNP one-to-one corresponds to the operation in the optimization algorithm of RFCM, which can ensure clear interpretability of the network. Moreover, MoE-PNP captures the general fusion principle for different unregistered images and therefore has good generalization. Extensive experiments demonstrate that MoE-PNP achieves state-of-the-art performance for unregistered HSI and MSI fusion. The code is available at https://github.com/Jiahuiqu/MoE-PNP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
细小发布了新的文献求助10
刚刚
1秒前
2秒前
Jason发布了新的文献求助10
3秒前
3秒前
4秒前
5秒前
二一完成签到 ,获得积分10
5秒前
17866533271发布了新的文献求助10
5秒前
lin完成签到,获得积分10
6秒前
7秒前
小强快跑发布了新的文献求助10
8秒前
失眠的访枫完成签到 ,获得积分10
10秒前
10秒前
呆梨医生完成签到,获得积分10
11秒前
wang完成签到,获得积分10
11秒前
red发布了新的文献求助10
12秒前
李华发布了新的文献求助10
12秒前
13秒前
13秒前
14秒前
14秒前
田様应助温婉的篮球采纳,获得10
15秒前
月光入梦发布了新的文献求助10
16秒前
科研通AI6应助cc采纳,获得30
17秒前
追寻师完成签到 ,获得积分10
17秒前
Hushluo完成签到,获得积分10
17秒前
Akim应助包容代芹采纳,获得10
18秒前
19秒前
wang发布了新的文献求助10
19秒前
科研通AI6应助oxear采纳,获得10
19秒前
花海发布了新的文献求助10
20秒前
饼干完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助10
21秒前
21秒前
勤奋雨完成签到,获得积分10
22秒前
乐观的凌兰完成签到 ,获得积分10
22秒前
专注的问寒应助cherrychou采纳,获得30
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646490
求助须知:如何正确求助?哪些是违规求助? 4771445
关于积分的说明 15035283
捐赠科研通 4805288
什么是DOI,文献DOI怎么找? 2569581
邀请新用户注册赠送积分活动 1526573
关于科研通互助平台的介绍 1485858