A Principle Design of Registration-Fusion Consistency: Toward Interpretable Deep Unregistered Hyperspectral Image Fusion

高光谱成像 融合 一致性(知识库) 人工智能 图像融合 图像配准 传感器融合 计算机视觉 计算机科学 模式识别(心理学) 图像(数学) 哲学 语言学
作者
Jiahui Qu,Jizhou Cui,Wenqian Dong,Qian Du,Xiaoyang Wu,Song Xiao,Yunsong Li
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2024.3412528
摘要

For hyperspectral image (HSI) and multispectral image (MSI) fusion, it is often overlooked that multisource images acquired under different imaging conditions are difficult to be perfectly registered. Although some works attempt to fuse unregistered images, two thorny challenges remain. One is that registration and fusion are usually modeled as two independent tasks, and there is no yet a unified physical model to tightly couple them. Another is that deep learning (DL)-based methods may lack sufficient interpretability and generalization. In response to the above challenges, we propose an unregistered HSI fusion framework energized by a unified model of registration and fusion. First, a novel registration-fusion consistency physical perception model (RFCM) is designed, which uniformly models the image registration and fusion problem to greatly reduce the sensitivity of fusion performance to registration accuracy. Then, an HSI fusion framework (MoE-PNP) is proposed to learn the knowledge reasoning process for solving RFCM. Each basic module of MoE-PNP one-to-one corresponds to the operation in the optimization algorithm of RFCM, which can ensure clear interpretability of the network. Moreover, MoE-PNP captures the general fusion principle for different unregistered images and therefore has good generalization. Extensive experiments demonstrate that MoE-PNP achieves state-of-the-art performance for unregistered HSI and MSI fusion. The code is available at https://github.com/Jiahuiqu/MoE-PNP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
852应助xiaoxiao采纳,获得10
3秒前
lingjuanwu完成签到,获得积分10
3秒前
janice发布了新的文献求助10
4秒前
4秒前
快乐慕灵完成签到,获得积分10
6秒前
6秒前
JianYugen完成签到,获得积分10
6秒前
happy发布了新的文献求助10
7秒前
7秒前
8秒前
abe发布了新的文献求助10
9秒前
天天开心完成签到 ,获得积分10
9秒前
10秒前
11秒前
12秒前
所所应助clean采纳,获得10
13秒前
sad完成签到,获得积分10
14秒前
学术地瓜发布了新的文献求助10
14秒前
15秒前
16秒前
爱静静应助跳跃的访烟采纳,获得10
16秒前
在水一方应助圣晟胜采纳,获得10
17秒前
18秒前
18秒前
18秒前
segama完成签到 ,获得积分10
18秒前
在人中完成签到,获得积分10
18秒前
顾矜应助tangyuyi采纳,获得10
18秒前
我是老大应助满意冷荷采纳,获得10
21秒前
凝子老师发布了新的文献求助10
21秒前
Qinpy发布了新的文献求助20
22秒前
跳跃的访烟完成签到,获得积分10
22秒前
bkagyin应助janice采纳,获得10
23秒前
23秒前
clean发布了新的文献求助10
23秒前
会飞的木头应助Anquan采纳,获得10
25秒前
炫哥IRIS完成签到,获得积分10
25秒前
27秒前
思源应助凝子老师采纳,获得10
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528020
求助须知:如何正确求助?哪些是违规求助? 3108260
关于积分的说明 9288139
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540202
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849