A Principle Design of Registration-Fusion Consistency: Toward Interpretable Deep Unregistered Hyperspectral Image Fusion

高光谱成像 融合 一致性(知识库) 人工智能 图像融合 图像配准 传感器融合 计算机视觉 计算机科学 模式识别(心理学) 图像(数学) 语言学 哲学
作者
Jiahui Qu,Jizhou Cui,Wenqian Dong,Qian Du,Xiaoyang Wu,Song Xiao,Yunsong Li
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2024.3412528
摘要

For hyperspectral image (HSI) and multispectral image (MSI) fusion, it is often overlooked that multisource images acquired under different imaging conditions are difficult to be perfectly registered. Although some works attempt to fuse unregistered images, two thorny challenges remain. One is that registration and fusion are usually modeled as two independent tasks, and there is no yet a unified physical model to tightly couple them. Another is that deep learning (DL)-based methods may lack sufficient interpretability and generalization. In response to the above challenges, we propose an unregistered HSI fusion framework energized by a unified model of registration and fusion. First, a novel registration-fusion consistency physical perception model (RFCM) is designed, which uniformly models the image registration and fusion problem to greatly reduce the sensitivity of fusion performance to registration accuracy. Then, an HSI fusion framework (MoE-PNP) is proposed to learn the knowledge reasoning process for solving RFCM. Each basic module of MoE-PNP one-to-one corresponds to the operation in the optimization algorithm of RFCM, which can ensure clear interpretability of the network. Moreover, MoE-PNP captures the general fusion principle for different unregistered images and therefore has good generalization. Extensive experiments demonstrate that MoE-PNP achieves state-of-the-art performance for unregistered HSI and MSI fusion. The code is available at https://github.com/Jiahuiqu/MoE-PNP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
haimianbaobao完成签到 ,获得积分10
2秒前
XCL应助ty1996采纳,获得10
2秒前
3秒前
牙牙发布了新的文献求助10
3秒前
3秒前
刘老哥6发布了新的文献求助10
5秒前
直率的冰海完成签到,获得积分10
6秒前
7秒前
性静H情逸发布了新的文献求助10
7秒前
zheng_chen发布了新的文献求助10
8秒前
yyyyyyyyjt发布了新的文献求助10
8秒前
9秒前
jing完成签到,获得积分10
9秒前
sxx发布了新的文献求助10
9秒前
12秒前
视野胤发布了新的文献求助10
13秒前
14秒前
gu完成签到,获得积分10
15秒前
hxh完成签到 ,获得积分10
15秒前
yyyfff应助刘老哥6采纳,获得10
16秒前
daodemoli发布了新的文献求助10
16秒前
17秒前
汉堡包应助刘老哥6采纳,获得10
21秒前
性静H情逸发布了新的文献求助10
23秒前
三羧酸循环完成签到,获得积分10
23秒前
wanci应助yyyyyyyyjt采纳,获得10
24秒前
完美世界应助小菜鸟采纳,获得10
25秒前
HAHA完成签到,获得积分10
29秒前
彭于晏应助sxx采纳,获得10
30秒前
李爱国应助正直从阳采纳,获得10
30秒前
万能图书馆应助逾越采纳,获得10
30秒前
牙牙完成签到,获得积分10
30秒前
香蕉觅云应助顶刊我来了采纳,获得10
32秒前
BINGBING1230应助科研通管家采纳,获得100
34秒前
ding应助科研通管家采纳,获得30
34秒前
馆长应助科研通管家采纳,获得30
34秒前
鳗鱼悲应助科研通管家采纳,获得10
34秒前
陈大浩浩应助科研通管家采纳,获得10
35秒前
yusong应助科研通管家采纳,获得10
35秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4536710
求助须知:如何正确求助?哪些是违规求助? 3971829
关于积分的说明 12305068
捐赠科研通 3638666
什么是DOI,文献DOI怎么找? 2003376
邀请新用户注册赠送积分活动 1038821
科研通“疑难数据库(出版商)”最低求助积分说明 928216