已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Evaluating Bias and Fairness in AI: An Analysis of YouTube’s Recommendation Algorithm and its Impact on Geopolitical Discourse

地缘政治学 计算机科学 算法 互联网隐私 政治学 法学 政治
作者
Mert Can Çakmak,Nitin Agarwal,Obianuju Okeke,Ugochukwu Onyepunuka,Billy Spann
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-4421612/v1
摘要

Abstract Exposure to online information is often determined by recommendation algorithms that introduce unintended biases when information system platforms attempt to deliver content that is engaging and relevant to their users. Further investigation into the fairness of AI-powered recommendation systems is crucial to understanding technology’s effect on societal behavior. This study underscores the need for further investigations of algorithmic biases within these AI-powered information systems, particularly in the context of geopolitical discourse. Our investigations examine the behavior of YouTube’s recommendation algorithm regarding narratives from the Indo-Pacific region to identify potential biases and study the decision-making behavior of the algorithm. For our analysis, we collected recommended videos across five recommendation depths originating from seed videos related to our narratives. We used drift analysis to examine the evolution of various video characteristics such as emotion, sentiment, and content at each depth. Network analysis was also performed on each depth of recommended videos to determine the "highly-influential" videos responsible for driving the recommendations at each depth. Our analysis reveals narrative-dependent drifts from the original content and emotion present in our seed videos in YouTube’s recommendations. We also observe that highly influential videos at each depth act as attractors, directing content across recommendations where attractors in each depth can become topically unrelated to the original content. The contributions of this analysis add a layer of understanding to the "black-box" nature of the YouTube recommendation algorithm. This study also provides a quantifiable approach for assessing fairness in information systems that are capable of influencing vulnerable populations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一包辣条发布了新的文献求助10
1秒前
香蕉觅云应助张云涵采纳,获得30
3秒前
dyuguo3发布了新的文献求助10
4秒前
8秒前
和谐的孱完成签到,获得积分10
10秒前
12秒前
辛夷发布了新的文献求助10
13秒前
阴影发布了新的文献求助10
13秒前
传奇3应助赵坤煊采纳,获得10
14秒前
一包辣条完成签到,获得积分10
15秒前
15秒前
16秒前
17秒前
19秒前
20秒前
共享精神应助王老裂采纳,获得10
20秒前
爆米花应助2720539374采纳,获得10
21秒前
dfggg发布了新的文献求助10
21秒前
22秒前
23秒前
bloali发布了新的文献求助10
23秒前
24秒前
Orange应助苏州河采纳,获得10
24秒前
24秒前
所所应助Pufferfish采纳,获得10
24秒前
tiffany发布了新的文献求助10
25秒前
skxxxxxx完成签到,获得积分10
25秒前
科研通AI2S应助wenwen采纳,获得10
27秒前
28秒前
彭于晏应助漂亮的黄豆采纳,获得10
28秒前
29秒前
共享精神应助科研通管家采纳,获得10
30秒前
852应助科研通管家采纳,获得10
30秒前
科研通AI5应助科研通管家采纳,获得10
30秒前
科研通AI5应助科研通管家采纳,获得10
31秒前
CodeCraft应助科研通管家采纳,获得10
31秒前
31秒前
积极的曼彤完成签到,获得积分10
32秒前
云落完成签到,获得积分10
32秒前
bloali完成签到,获得积分10
33秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787862
求助须知:如何正确求助?哪些是违规求助? 3333506
关于积分的说明 10262111
捐赠科研通 3049278
什么是DOI,文献DOI怎么找? 1673487
邀请新用户注册赠送积分活动 801982
科研通“疑难数据库(出版商)”最低求助积分说明 760458