Deep Learning for Protein-Ligand Docking: Are We There Yet?

蛋白质-配体对接 对接(动物) 计算机科学 计算生物学 药物发现 配体(生物化学) 大分子对接 人工智能 蛋白质结构 虚拟筛选 化学 生物 生物信息学 生物化学 受体 医学 护理部
作者
Alex Morehead,Nabin Giri,Jian Liu,Jianlin Cheng
出处
期刊:Cornell University - arXiv
标识
摘要

The effects of ligand binding on protein structures and their in vivo functions carry numerous implications for modern biomedical research and biotechnology development efforts such as drug discovery. Although several deep learning (DL) methods and benchmarks designed for protein-ligand docking have recently been introduced, to date no prior works have systematically studied the behavior of docking methods within the practical context of (1) using predicted (apo) protein structures for docking (e.g., for broad applicability); (2) docking multiple ligands concurrently to a given target protein (e.g., for enzyme design); and (3) having no prior knowledge of binding pockets (e.g., for pocket generalization). To enable a deeper understanding of docking methods' real-world utility, we introduce PoseBench, the first comprehensive benchmark for practical protein-ligand docking. PoseBench enables researchers to rigorously and systematically evaluate DL docking methods for apo-to-holo protein-ligand docking and protein-ligand structure generation using both single and multi-ligand benchmark datasets, the latter of which we introduce for the first time to the DL community. Empirically, using PoseBench, we find that all recent DL docking methods but one fail to generalize to multi-ligand protein targets and also that template-based docking algorithms perform equally well or better for multi-ligand docking as recent single-ligand DL docking methods, suggesting areas of improvement for future work. Code, data, tutorials, and benchmark results are available at https://github.com/BioinfoMachineLearning/PoseBench.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
弓長玉王令完成签到 ,获得积分10
刚刚
传奇3应助殷少华采纳,获得10
刚刚
astar927完成签到,获得积分20
1秒前
1秒前
Chine-Wang发布了新的文献求助20
1秒前
Hello应助lilili采纳,获得10
2秒前
2秒前
3秒前
可爱的函函应助城市猎人采纳,获得10
3秒前
雪原白鹿发布了新的文献求助10
3秒前
Ann完成签到,获得积分10
3秒前
ww完成签到 ,获得积分10
3秒前
4秒前
fanzg完成签到,获得积分10
4秒前
领导范儿应助anti采纳,获得10
4秒前
4秒前
4秒前
ssk完成签到,获得积分10
5秒前
5秒前
kk发布了新的文献求助10
5秒前
5秒前
谨慎的哈密瓜给谨慎的哈密瓜的求助进行了留言
6秒前
meethaha发布了新的文献求助10
7秒前
8秒前
琉璃929完成签到,获得积分10
8秒前
霸气谷蕊完成签到,获得积分10
9秒前
9秒前
万能图书馆应助k1icet采纳,获得10
9秒前
爽歪歪完成签到,获得积分10
9秒前
Ndqq发布了新的文献求助10
9秒前
隐形白亦发布了新的文献求助10
9秒前
10秒前
10秒前
隐形不斜完成签到,获得积分10
10秒前
wangxixi发布了新的文献求助10
11秒前
11秒前
忧虑的鼠标完成签到,获得积分10
12秒前
Bcc完成签到,获得积分10
12秒前
灰色与青完成签到,获得积分10
13秒前
FashionBoy应助嘟嘟嘟采纳,获得10
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978852
求助须知:如何正确求助?哪些是违规求助? 3522781
关于积分的说明 11214876
捐赠科研通 3260258
什么是DOI,文献DOI怎么找? 1799853
邀请新用户注册赠送积分活动 878711
科研通“疑难数据库(出版商)”最低求助积分说明 807059