清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An integrated model combining BERT and tree-augmented naive Bayes for analyzing risk factors of construction accident

计算机科学 事故(哲学) 朴素贝叶斯分类器 贝叶斯定理 树(集合论) 人工智能 控制论 机器学习 数据挖掘 贝叶斯概率 数学 数学分析 哲学 认识论 支持向量机
作者
Shupeng Liu,Jianhong Shen,Jing Zhang
出处
期刊:Kybernetes [Emerald (MCB UP)]
标识
DOI:10.1108/k-08-2023-1605
摘要

Purpose Learning from past construction accident reports is critical to reducing their occurrence. Digital technology provides feasibility for extracting risk factors from unstructured reports, but there are few related studies, and there is a limitation that textual contextual information cannot be considered during extraction, which tends to miss some important factors. Meanwhile, further analysis, assessment and control for the extracted factors are lacking. This paper aims to explore an integrated model that combines the advantages of multiple digital technologies to effectively solve the above problems. Design/methodology/approach A total of 1000 construction accident reports from Chinese government websites were used as the dataset of this paper. After text pre-processing, the risk factors related to accident causes were extracted using KeyBERT, and the accident texts were encoded into structured data. Tree-augmented naive (TAN) Bayes was used to learn the data and construct a visualized risk analysis network for construction accidents. Findings The use of KeyBERT successfully considered the textual contextual information, prompting the extracted risk factors to be more complete. The integrated TAN successfully further explored construction risk factors from multiple perspectives, including the identification of key risk factors, the coupling analysis of risk factors and the troubleshooting method of accident risk source. The area under curve (AUC) value of the model reaches up to 0.938 after 10-fold cross-validation, indicating good performance. Originality/value This paper presents a new machine-assisted integrated model for accident report mining and risk factor analysis, and the research findings can provide theoretical and practical support for accident safety management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
chao Liu完成签到 ,获得积分10
15秒前
17秒前
zh完成签到 ,获得积分10
18秒前
34秒前
50秒前
李豆豆发布了新的文献求助10
53秒前
56秒前
Lucas应助11oneelevenisme采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
香蕉觅云应助lda采纳,获得10
1分钟前
呆呆的猕猴桃完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
小强完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
3分钟前
樱桃猴子应助白华苍松采纳,获得10
3分钟前
3分钟前
3分钟前
tufei发布了新的文献求助10
3分钟前
3分钟前
tufei完成签到,获得积分10
3分钟前
3分钟前
小星云发布了新的文献求助100
3分钟前
川藏客完成签到 ,获得积分10
4分钟前
4分钟前
Arthur完成签到,获得积分10
4分钟前
4分钟前
Owen应助小星云采纳,获得10
4分钟前
樱桃猴子应助白华苍松采纳,获得10
4分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526584
求助须知:如何正确求助?哪些是违规求助? 3107022
关于积分的说明 9282092
捐赠科研通 2804622
什么是DOI,文献DOI怎么找? 1539534
邀请新用户注册赠送积分活动 716583
科研通“疑难数据库(出版商)”最低求助积分说明 709581