清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Clinical prediction models for in vitro fertilization outcomes: a systematic review, meta-analysis, and external validation

荟萃分析 系统回顾 梅德林 活产 预测建模 统计的 医学 计算机科学 医学物理学 统计 怀孕 机器学习 病理 生物 遗传学 生物化学 数学
作者
Tian Chen,Liying Liu,Yaling Huang,H. J. Yang,Yi‐Hua Lai,Chunxiao Li,Daniel Z. Q. Gan,Jie Yang
出处
期刊:Human Reproduction [Oxford University Press]
标识
DOI:10.1093/humrep/deaf013
摘要

Abstract STUDY QUESTION What is the best-performing model currently predicting live birth outcomes for IVF or ICSI? SUMMARY ANSWER Among the identified prognostic models, McLernon’s post-treatment model outperforms other models in both the meta-analysis and external validation of a Chinese cohort. WHAT IS KNOWN ALREADY With numerous similar models available across different time periods and using various predictors in IVF prognostic models, there is a need to summarize and evaluate them, due to a lack of validated evidence distinguishing high-quality from low-quality prediction tools. However, there is a notable dearth of research in the form of meta-analysis or external validation assessing the performance of models in predicting live births in this field. STUDY DESIGN, SIZE, DURATION The researchers conducted a comprehensive literature review in PubMed, EMBASE, and Web of Science, using keywords related to prognostic models and IVF/ICSI live birth outcomes. The search included studies published up to 3 April 2024, and was limited to English language studies. PARTICIPANTS/MATERIALS, SETTING, METHODS The review included studies that developed or validated prognostic models for IVF live birth outcomes while providing clear reports on model characteristics. Researchers extracted and analysed the data in accordance with the guidelines outlined in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses and other model-related guidelines. For model effects in meta-analysis, the choice would be based on the heterogeneity assessed using the I2 statistic and the Cochrane Q test. Model performance was evaluated by assessing their area under the receiver operating characteristic curves (AUCs) and calibration plots in the studies. MAIN RESULTS AND THE ROLE OF CHANCE This review provides a comprehensive summary of data derived from 72 studies with an overall ROB of high or unclear. These studies contained a total of 132 predictors and 86 prognostic models, and then meta-analyses were performed for each of the five selected models. The total random effects of Templeton’s, Nelson’s, McLernon’s pre-treatment and post-treatment model demonstrated AUCs of 0.65 (95% CI: 0.61–0.69), 0.63 (95% CI: 0.63–0.64), 0.67 (95% CI: 0.62–0.71), and 0.73 (95% CI: 0.71–0.75), respectively. The total fixed effects of the intelligent data analysis score (iDAScore) model estimated an AUC of 0.66 (95% CI: 0.63–0.68). The external validation of the initial four models in our cohort produced AUCs ranging from 0.53 to 0.58, and the calibration was confirmed through calibration plots. LIMITATIONS, REASONS FOR CAUTION While the focus on English-language studies and live birth outcomes may constrain the generalizability of the findings to diverse populations, this approach equips clinicians, who view live births as the ultimate objective, with more precise and actionable reference guidelines. WIDER IMPLICATIONS OF THE FINDINGS This study represents the first meta-analysis in the field of IVF prediction models, definitively confirming the superior performance of McLernon’s post-treatment model. The conclusion is reinforced by independent validation from another perspective. Nevertheless, further investigation is warranted to develop new models and to externally validate existing high-performing models for prognostic accuracy in IVF outcomes. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the National Natural Science Foundation of China (Grant No. 82174517). The authors report no conflict of interest. REGISTRATION NUMBER 2022 CRD42022312018.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Emperor完成签到 ,获得积分0
15秒前
Alisha完成签到,获得积分10
42秒前
诺亚方舟哇哈哈完成签到 ,获得积分0
44秒前
MchemG应助科研通管家采纳,获得10
52秒前
latiao99应助科研通管家采纳,获得10
52秒前
doreen完成签到 ,获得积分10
56秒前
guo完成签到 ,获得积分10
1分钟前
suiwuya完成签到,获得积分10
1分钟前
田田完成签到 ,获得积分10
2分钟前
泡泡完成签到,获得积分20
2分钟前
彭于晏应助白华苍松采纳,获得10
2分钟前
未完成完成签到,获得积分10
2分钟前
波霎完成签到,获得积分10
2分钟前
邓代容完成签到 ,获得积分10
2分钟前
2分钟前
lijiauyi1994发布了新的文献求助10
2分钟前
lijiauyi1994完成签到,获得积分10
2分钟前
latiao99应助科研通管家采纳,获得10
2分钟前
hao完成签到 ,获得积分20
3分钟前
丘比特应助白华苍松采纳,获得10
3分钟前
英姑应助白华苍松采纳,获得10
5分钟前
Dio发布了新的文献求助10
6分钟前
小二郎应助白华苍松采纳,获得10
6分钟前
Dio完成签到,获得积分10
7分钟前
优美觅海完成签到,获得积分20
8分钟前
Kaz_完成签到,获得积分10
8分钟前
8分钟前
8分钟前
8分钟前
优美觅海发布了新的文献求助10
8分钟前
赵TV完成签到,获得积分10
8分钟前
赵TV发布了新的文献求助10
8分钟前
8分钟前
muriel完成签到,获得积分10
8分钟前
9分钟前
9分钟前
jojo完成签到 ,获得积分10
9分钟前
Ava应助眼里的萧萧雨采纳,获得10
9分钟前
今后应助白华苍松采纳,获得10
9分钟前
呆呆的猕猴桃完成签到 ,获得积分10
10分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3516380
求助须知:如何正确求助?哪些是违规求助? 3098645
关于积分的说明 9240247
捐赠科研通 2793766
什么是DOI,文献DOI怎么找? 1533245
邀请新用户注册赠送积分活动 712622
科研通“疑难数据库(出版商)”最低求助积分说明 707396