Research on Bridge Concrete Crack Damage Prediction Method Based on Deep Learning Temporal Model

桥(图论) 计算机科学 深度学习 人工智能 结构工程 工程类 医学 内科学
作者
Weidong Xu,Cunjin Cai,Wen Xiong,Yanjie Zhu
出处
期刊:SAE technical paper series 卷期号:1
标识
DOI:10.4271/2025-01-7126
摘要

<div class="section abstract"><div class="htmlview paragraph">Intelligent Structural Health Monitoring (SHM) of bridge is a technology that utilizes advanced sensor technology along with professional bridge engineering knowledge, coupled with machine vision and other intelligent methods for continuously monitoring and evaluating the status of bridge structures. One application of SHM technology for bridges by way of machine learning is in the use of damage detection and quantification. In this way, changes in bridge conditions can be analyzed efficiently and accurately, ensuring stable operational performance throughout the lifecycle of the bridge. However, in the field of damage detection, although machine vision can effectively identify and quantify existing damages, it still lacks accuracy for predicting future damage trends based on real-time data. Such shortfall l may lead to late addressing of potential safety hazards, causing accelerated damage development and threatening structural safety. To tackle this problem, this study designs a deep learning model based on temporal information to solve the problem of predictive damage development, achieving early warning and dynamic evaluation effects. This study focuses on concrete crack development, and the CrackAE model is based on traditional semantic segmentation models and conditional autoencoder architecture. The model consists of an encoder and a decoder. The encoder accepts image data and outputs a feature map. The future map along with the conditional vector encoded based on physical temporal information, serves as the input to the decoder. The output of decoder is the development state of the crack at the specified prediction time. The model achieved an accuracy of 94.6% in real bending failure tests of concrete beams, indicating that the model meets high-precision prediction requirements. This validates the feasibility of deep learning in predicting damage development and provides new ideas for data collection and prediction in actual bridge maintenance.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小王发布了新的文献求助10
2秒前
3秒前
轩轩好厉害完成签到,获得积分10
3秒前
5秒前
7秒前
7秒前
7秒前
学渣完成签到 ,获得积分10
8秒前
可许发布了新的文献求助30
9秒前
大闲鱼铭一完成签到 ,获得积分10
10秒前
wxh发布了新的文献求助10
10秒前
11秒前
han应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
wj发布了新的文献求助10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
12秒前
充电宝应助科研通管家采纳,获得10
12秒前
上官若男应助科研通管家采纳,获得10
12秒前
12秒前
小二郎应助科研通管家采纳,获得10
12秒前
Ava应助科研通管家采纳,获得10
12秒前
FashionBoy应助科研通管家采纳,获得10
12秒前
12秒前
酷波er应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
田様应助HY采纳,获得10
12秒前
HTJ发布了新的文献求助10
13秒前
Qianbaor应助研友_Z7WGlZ采纳,获得10
13秒前
乐乐应助qwe采纳,获得10
13秒前
13秒前
14秒前
LU完成签到 ,获得积分10
14秒前
充电宝应助xiaoqi采纳,获得10
14秒前
15秒前
17秒前
zhangni完成签到,获得积分10
18秒前
bluelu发布了新的文献求助10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542666
求助须知:如何正确求助?哪些是违规求助? 3120072
关于积分的说明 9341436
捐赠科研通 2818131
什么是DOI,文献DOI怎么找? 1549355
邀请新用户注册赠送积分活动 722120
科研通“疑难数据库(出版商)”最低求助积分说明 712944