The Role of Artificial Intelligence Combined With Digital Cholangioscopy for Indeterminant and Malignant Biliary Strictures

医学 诊断优势比 内镜逆行胰胆管造影术 荟萃分析 接收机工作特性 诊断准确性 人工智能 放射科 内科学 计算机科学 胰腺炎
作者
Thomas R. McCarty,Raj J. Shah,Ronan Allencherril,Nabeel Moon,Basile Njei
出处
期刊:Journal of Clinical Gastroenterology [Ovid Technologies (Wolters Kluwer)]
标识
DOI:10.1097/mcg.0000000000002148
摘要

Background: Current endoscopic retrograde cholangiopancreatography (ERCP) and cholangioscopic-based diagnostic sampling for indeterminant biliary strictures remain suboptimal. Artificial intelligence (AI)-based algorithms by means of computer vision in machine learning have been applied to cholangioscopy in an effort to improve diagnostic yield. The aim of this study was to perform a systematic review and meta-analysis to evaluate the diagnostic performance of AI-based diagnostic performance of AI-associated cholangioscopic diagnosis of indeterminant or malignant biliary strictures. Methods: Individualized searches were developed in accordance with PRISMA and MOOSE guidelines, and meta-analysis according to Cochrane Diagnostic Test Accuracy working group methodology. A bivariate model was used to compute pooled sensitivity and specificity, likelihood ratio, diagnostic odds ratio, and summary receiver operating characteristics curve (SROC). Results: Five studies (n=675 lesions; a total of 2,685,674 cholangioscopic images) were included. All but one study analyzed a deep learning AI-based system using a convoluted neural network (CNN) with an average image processing speed of 30 to 60 frames per second. The pooled sensitivity and specificity were 95% (95% CI: 85-98) and 88% (95% CI: 76-94), with a diagnostic accuracy (SROC) of 97% (95% CI: 95-98). Sensitivity analysis of CNN studies (4 studies, 538 patients) demonstrated a pooled sensitivity, specificity, and accuracy (SROC) of 95% (95% CI: 82-99), 88% (95% CI: 72-95), and 97% (95% CI: 95-98), respectively. Conclusions: Artificial intelligence-based machine learning of cholangioscopy images appears to be a promising modality for the diagnosis of indeterminant and malignant biliary strictures.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
April发布了新的文献求助10
刚刚
ppp完成签到,获得积分20
5秒前
情怀应助兜兜采纳,获得10
5秒前
野性的芹菜完成签到,获得积分20
6秒前
7秒前
sswaggyc完成签到,获得积分10
7秒前
万能图书馆应助完美梨愁采纳,获得10
7秒前
8秒前
篇篇高分发布了新的文献求助10
12秒前
YAgT发布了新的文献求助10
12秒前
Jupiter 1234发布了新的文献求助10
13秒前
13秒前
Dawn完成签到,获得积分10
15秒前
xixi完成签到,获得积分20
15秒前
Mic应助依于采纳,获得10
15秒前
orixero应助依于采纳,获得10
16秒前
17秒前
17秒前
qiqi完成签到,获得积分10
18秒前
隐形曼青应助喜欢采纳,获得10
18秒前
小蘑菇应助野性的芹菜采纳,获得10
19秒前
20秒前
英姑应助haoliangshi采纳,获得10
20秒前
CipherSage应助haoliangshi采纳,获得10
20秒前
20秒前
20秒前
21秒前
Kaixuan1607发布了新的文献求助30
21秒前
ke888发布了新的文献求助30
22秒前
科研通AI6.1应助abcd采纳,获得10
23秒前
科研通AI6.1应助面包战士采纳,获得10
24秒前
孤独的尔冬完成签到,获得积分10
24秒前
鳎mu发布了新的文献求助20
25秒前
自由的不弱应助优雅夕阳采纳,获得10
26秒前
jason完成签到,获得积分10
27秒前
28秒前
酉灯完成签到,获得积分20
30秒前
把狗摆反应助xixi采纳,获得30
31秒前
打打应助张志迪采纳,获得10
31秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
生活在欺瞒的年代:傅树介政治斗争回忆录 260
A History of Rice in China 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5874805
求助须知:如何正确求助?哪些是违规求助? 6510728
关于积分的说明 15675172
捐赠科研通 4992381
什么是DOI,文献DOI怎么找? 2691139
邀请新用户注册赠送积分活动 1633514
关于科研通互助平台的介绍 1591186