亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The Role of Artificial Intelligence Combined With Digital Cholangioscopy for Indeterminant and Malignant Biliary Strictures

医学 诊断优势比 内镜逆行胰胆管造影术 荟萃分析 接收机工作特性 诊断准确性 人工智能 放射科 内科学 胰腺炎 计算机科学
作者
Thomas R. McCarty,Raj J. Shah,Ronan Allencherril,Nabeel Moon,Basile Njei
出处
期刊:Journal of Clinical Gastroenterology [Ovid Technologies (Wolters Kluwer)]
标识
DOI:10.1097/mcg.0000000000002148
摘要

Background: Current endoscopic retrograde cholangiopancreatography (ERCP) and cholangioscopic-based diagnostic sampling for indeterminant biliary strictures remain suboptimal. Artificial intelligence (AI)-based algorithms by means of computer vision in machine learning have been applied to cholangioscopy in an effort to improve diagnostic yield. The aim of this study was to perform a systematic review and meta-analysis to evaluate the diagnostic performance of AI-based diagnostic performance of AI-associated cholangioscopic diagnosis of indeterminant or malignant biliary strictures. Methods: Individualized searches were developed in accordance with PRISMA and MOOSE guidelines, and meta-analysis according to Cochrane Diagnostic Test Accuracy working group methodology. A bivariate model was used to compute pooled sensitivity and specificity, likelihood ratio, diagnostic odds ratio, and summary receiver operating characteristics curve (SROC). Results: Five studies (n=675 lesions; a total of 2,685,674 cholangioscopic images) were included. All but one study analyzed a deep learning AI-based system using a convoluted neural network (CNN) with an average image processing speed of 30 to 60 frames per second. The pooled sensitivity and specificity were 95% (95% CI: 85-98) and 88% (95% CI: 76-94), with a diagnostic accuracy (SROC) of 97% (95% CI: 95-98). Sensitivity analysis of CNN studies (4 studies, 538 patients) demonstrated a pooled sensitivity, specificity, and accuracy (SROC) of 95% (95% CI: 82-99), 88% (95% CI: 72-95), and 97% (95% CI: 95-98), respectively. Conclusions: Artificial intelligence-based machine learning of cholangioscopy images appears to be a promising modality for the diagnosis of indeterminant and malignant biliary strictures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老石完成签到 ,获得积分10
30秒前
54秒前
1分钟前
ni发布了新的文献求助10
1分钟前
非洲大象完成签到,获得积分10
1分钟前
斯文败类应助ni采纳,获得10
1分钟前
科研通AI5应助Demi_Ming采纳,获得10
1分钟前
1分钟前
1分钟前
2分钟前
Demi_Ming发布了新的文献求助10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
aa完成签到,获得积分10
2分钟前
LMY1411完成签到,获得积分10
2分钟前
2分钟前
2分钟前
NSstupid发布了新的文献求助10
3分钟前
NSstupid完成签到,获得积分10
3分钟前
3分钟前
小马甲应助Demi_Ming采纳,获得10
3分钟前
在水一方应助奈思采纳,获得10
3分钟前
Hello应助kdjm688采纳,获得10
4分钟前
4分钟前
李健应助wbs13521采纳,获得10
4分钟前
Demi_Ming发布了新的文献求助10
4分钟前
5分钟前
RylNG完成签到,获得积分10
5分钟前
5分钟前
kdjm688发布了新的文献求助10
5分钟前
Hziyi发布了新的文献求助10
5分钟前
Hziyi完成签到,获得积分20
5分钟前
5分钟前
冬去春来完成签到 ,获得积分10
5分钟前
FashionBoy应助科研通管家采纳,获得10
6分钟前
小二郎应助点心采纳,获得10
6分钟前
6分钟前
善学以致用应助FXDD采纳,获得10
6分钟前
7分钟前
Hd完成签到 ,获得积分10
7分钟前
7分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
A Modified Hierarchical Risk Parity Framework for Portfolio Management 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3575079
求助须知:如何正确求助?哪些是违规求助? 3145092
关于积分的说明 9458069
捐赠科研通 2846362
什么是DOI,文献DOI怎么找? 1564821
邀请新用户注册赠送积分活动 732613
科研通“疑难数据库(出版商)”最低求助积分说明 719188