亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Molecular Modelling in Bioactive Peptide Discovery and Characterisation

计算生物学 化学 生物 生物化学
作者
Clement Agoni,Raúl Fernández-Díaz,Patrick Brendan Timmons,Alessandro Adelfio,Hansel Gómez,Denis C. Shields
出处
期刊:Biomolecules [Multidisciplinary Digital Publishing Institute]
卷期号:15 (4): 524-524
标识
DOI:10.3390/biom15040524
摘要

Molecular modelling is a vital tool in the discovery and characterisation of bioactive peptides, providing insights into their structural properties and interactions with biological targets. Many models predicting bioactive peptide function or structure rely on their intrinsic properties, including the influence of amino acid composition, sequence, and chain length, which impact stability, folding, aggregation, and target interaction. Homology modelling predicts peptide structures based on known templates. Peptide–protein interactions can be explored using molecular docking techniques, but there are challenges related to the inherent flexibility of peptides, which can be addressed by more computationally intensive approaches that consider their movement over time, called molecular dynamics (MD). Virtual screening of many peptides, usually against a single target, enables rapid identification of potential bioactive peptides from large libraries, typically using docking approaches. The integration of artificial intelligence (AI) has transformed peptide discovery by leveraging large amounts of data. AlphaFold is a general protein structure prediction tool based on deep learning that has greatly improved the predictions of peptide conformations and interactions, in addition to providing estimates of model accuracy at each residue which greatly guide interpretation. Peptide function and structure prediction are being further enhanced using Protein Language Models (PLMs), which are large deep-learning-derived statistical models that learn computer representations useful to identify fundamental patterns of proteins. Recent methodological developments are discussed in the context of canonical peptides, as well as those with modifications and cyclisations. In designing potential peptide therapeutics, the main outstanding challenge for these methods is the incorporation of diverse non-canonical amino acids and cyclisations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
彭于晏应助雪白雪糕采纳,获得10
8秒前
qqq完成签到,获得积分10
8秒前
zho关闭了zho文献求助
16秒前
17秒前
Levent发布了新的文献求助10
18秒前
qwdqw发布了新的文献求助10
23秒前
Chocolat_Chaud完成签到,获得积分10
23秒前
Levent完成签到,获得积分10
31秒前
qwdqw完成签到,获得积分10
33秒前
11128完成签到 ,获得积分10
34秒前
淡然的金针菇完成签到,获得积分20
41秒前
zz发布了新的文献求助10
48秒前
古月完成签到,获得积分10
49秒前
所所应助zz采纳,获得10
54秒前
时尚丹寒发布了新的文献求助100
54秒前
斯寜应助KYT龙采纳,获得10
56秒前
57秒前
星辰大海应助秋萍采纳,获得10
1分钟前
平淡的中心完成签到,获得积分10
1分钟前
valere完成签到 ,获得积分10
1分钟前
fchwpo完成签到,获得积分10
1分钟前
Zenglongying完成签到 ,获得积分10
1分钟前
1分钟前
诸葛醉薇发布了新的文献求助10
1分钟前
小白菜完成签到 ,获得积分10
1分钟前
1分钟前
小冉发布了新的文献求助10
1分钟前
zho发布了新的文献求助10
1分钟前
Cyrus完成签到 ,获得积分10
1分钟前
小冉完成签到,获得积分10
1分钟前
铭铭完成签到,获得积分10
1分钟前
nenoaowu应助科研通管家采纳,获得30
1分钟前
1分钟前
hzc关闭了hzc文献求助
2分钟前
木穹完成签到,获得积分10
2分钟前
nav完成签到 ,获得积分10
2分钟前
KYT龙完成签到,获得积分10
2分钟前
lin完成签到,获得积分20
2分钟前
冷酷哈密瓜完成签到,获得积分10
2分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3753840
求助须知:如何正确求助?哪些是违规求助? 3297239
关于积分的说明 10098126
捐赠科研通 3011966
什么是DOI,文献DOI怎么找? 1654340
邀请新用户注册赠送积分活动 788779
科研通“疑难数据库(出版商)”最低求助积分说明 753003