Satellite Remote Sensing-Implemented Nontargeted Screening of Emerging Contaminant Fingerprints in a River-to-Ocean Continuum through Interpretable Machine Learning: The Pivotal Intermediary Role of Dissolved Organic Matter

溶解有机碳 环境科学 卫星 遥感 有机质 环境资源管理 环境化学 工程类 地质学 化学 有机化学 航空航天工程
作者
Chao Zhang,Junyu Zhu,Wenjie Mai,Zhenguo Chen,Yue Xie,Shuna Fu,Di Xia,Chunfang Cai,Wanbing Zheng,Jinxin Liu,Yang Lin,Zhe Zhang,Mingzhi Huang,Fengchang Wu
出处
期刊:Environmental Science & Technology [American Chemical Society]
标识
DOI:10.1021/acs.est.4c14425
摘要

Emerging contaminants (ECs) can exert irreversible health impacts on humans, even at trace concentrations. Currently, nontargeted screening of ECs has been developed for their assessment, which requires sophisticated instrumentation. Although satellite remote sensing is a cost-effective technology for water quality assessment, accurately measuring ECs in a river-to-ocean continuum remains a significant challenge due to their trace levels. To address this challenge, we innovate a strategy utilizing satellite remote sensing to achieve high-resolution nontargeted EC screening. By employing DOM as an intermediary variable, bridging the gap between satellite remote sensing and ECs in river-to-ocean continua. DOM, including the total sum of ECs, reflects their distribution and spectral sensitivity, enabling satellite sensing to capture their unique fingerprints. In this study, this strategy has enhanced the accuracy of nontargeted EC screening from 32.2 to 95.7% using machine learning. Interpretable machine learning causal inference and SHAP models reveal that shortwave infrared (SWIR) S2-B11 is crucial for EC screening while emphasizing the importance of avoiding multicollinearity with similar SWIR band S2-B12. Additionally, the band reflectance is influenced by the proportion of polarity-related heterogeneity in the ECs. Furthermore, we developed a real-time remote sensing surveillance system featuring interactive maps for nontargeted screening of ECs and GPT-based contamination interpretation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
搜集达人应助刘子旭采纳,获得10
2秒前
2秒前
科研小民工应助猪猪hero采纳,获得60
3秒前
3秒前
顾矜应助dlutli采纳,获得10
3秒前
mengzhe完成签到,获得积分10
4秒前
科研通AI2S应助疯狂的月亮采纳,获得10
5秒前
chun发布了新的文献求助10
6秒前
DrDaiJune发布了新的文献求助30
6秒前
duanhahaha发布了新的文献求助10
6秒前
7秒前
好运来发布了新的文献求助10
7秒前
xiaxiao应助时间不够用采纳,获得500
8秒前
smartegg完成签到,获得积分10
8秒前
YSY完成签到,获得积分10
8秒前
贪玩的裘发布了新的文献求助10
9秒前
天空完成签到 ,获得积分10
9秒前
9秒前
11秒前
zhendema发布了新的文献求助10
11秒前
goodgoodstudy发布了新的文献求助10
11秒前
青青发布了新的文献求助10
11秒前
可靠秋寒完成签到,获得积分10
12秒前
Kyrie完成签到 ,获得积分10
12秒前
12秒前
cdercder应助外向小刺猬采纳,获得10
13秒前
所所应助自由的秋灵采纳,获得10
13秒前
13秒前
假装有名字关注了科研通微信公众号
14秒前
yl完成签到,获得积分10
14秒前
14秒前
15秒前
15秒前
秀丽的剑心完成签到,获得积分10
15秒前
科研通AI5应助学术菜鸟采纳,获得10
16秒前
16秒前
adai007完成签到,获得积分10
17秒前
科研通AI5应助健忘数据线采纳,获得10
18秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3745081
求助须知:如何正确求助?哪些是违规求助? 3287963
关于积分的说明 10056783
捐赠科研通 3004153
什么是DOI,文献DOI怎么找? 1649530
邀请新用户注册赠送积分活动 785360
科研通“疑难数据库(出版商)”最低求助积分说明 751063