Development and validation of convolutional neural network-based model to predict the risk of sentinel or non-sentinel lymph node metastasis in patients with breast cancer: a machine learning study

医学 前哨淋巴结 卷积神经网络 乳腺癌 转移 试验装置 人工智能 放射科 机器学习 肿瘤科 内科学 癌症 计算机科学
作者
Mingzhen Chen,Chunli Kong,Guihan Lin,Weiyue Chen,Xinyu Guo,Yaning Chen,Cheng Xue,Minjiang Chen,Changsheng Shi,Min Xu,Jun‐Hui Sun,Chenying Lu,Jiansong Ji
出处
期刊:EClinicalMedicine [Elsevier BV]
卷期号:63: 102176-102176 被引量:11
标识
DOI:10.1016/j.eclinm.2023.102176
摘要

Summary

Background

For patients with sentinel lymph node (SLN) metastasis and low risk of residual non-SLN (NSLN) metastasis, axillary lymph node (ALN) dissection could lead to overtreatment. This study aimed to develop and validate an automated preoperative deep learning-based tool to predict the risk of SLN and NSLN metastasis in patients with breast cancer (BC) using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) images.

Methods

In this machine learning study, we retrospectively enrolled 988 women with BC from three hospitals in Zhejiang, China between June 1, 2013 to December 31, 2021, June 1, 2017 to December 31, 2021, and January 1, 2019 to June 30, 2023, respectively. Patients were divided into the training set (n = 519), internal validation set (n = 129), external test set 1 (n = 296), and external test set 2 (n = 44). A convolutional neural network (CNN) model was proposed to predict the SLN and NSLN metastasis and was compared with clinical and radiomics approaches. The performance of different models to detect ALN metastasis was measured by the area under the curve (AUC), accuracy, sensitivity, and specificity. This study is registered at ChiCTR, ChiCTR2300070740.

Findings

For SLN prediction, the top-performing model (i.e., the CNN algorithm) achieved encouraging predictive performance in the internal validation set (AUC 0.899, 95% CI, 0.887–0.911), external test set 1 (AUC 0.885, 95% CI, 0.867–0.903), and external test set 2 (AUC 0.768, 95% CI, 0.738–0.798). For NSLN prediction, the CNN-based model also exhibited satisfactory performance in the internal validation set (AUC 0.800, 95% CI, 0.783–0.817), external test set 1 (AUC 0.763, 95% CI, 0.732–0.794), and external test set 2 (AUC 0.728, 95% CI, 0.719–0.738). Based on the subgroup analysis, the CNN model performed well in tumour group smaller than 2.0 cm, with the AUC of 0.801 (internal validation set) and 0.823 (external test set 1). Of 469 patients with BC, the false positive rate of SLN prediction declined from 77.9% to 32.9% using CNN model.

Interpretation

The CNN model can predict the SLN status of any detectable lesion size and condition of NSLN in patients with BC. Overall, the CNN model, employing ready DCE-MRI images could serve as a potential technique to assist surgeons in the personalized axillary treatment of in patients with BC non-invasively.

Funding

National Key Research and Development projects intergovernmental cooperation in science and technology of China, National Natural Science Foundation of China, Natural Science Foundation of Zhejiang Province, and Zhejiang Medical and Health Science Project.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kjh完成签到,获得积分10
刚刚
英姑应助Maxine采纳,获得30
刚刚
刚刚
刚刚
1秒前
韵寒发布了新的文献求助10
2秒前
海绵宝宝发布了新的文献求助10
2秒前
2秒前
2秒前
JamesPei应助阿four采纳,获得10
2秒前
3秒前
3秒前
华仔应助zxy666采纳,获得10
3秒前
Daisykiller发布了新的文献求助10
3秒前
尽我所能完成签到,获得积分20
3秒前
我是老大应助maohuibai采纳,获得10
4秒前
脑洞疼应助细胞色素采纳,获得10
5秒前
hh发布了新的文献求助10
5秒前
Hany完成签到,获得积分10
5秒前
5秒前
holo发布了新的文献求助10
6秒前
凶狠的绮波完成签到,获得积分10
6秒前
qll发布了新的文献求助10
7秒前
尽我所能发布了新的文献求助10
7秒前
7秒前
。。。。发布了新的文献求助10
7秒前
7秒前
hs发布了新的文献求助10
7秒前
sunsun完成签到,获得积分10
8秒前
杨一发布了新的文献求助10
9秒前
9秒前
欣喜石头完成签到 ,获得积分10
9秒前
量子世界小居民完成签到,获得积分20
9秒前
MM完成签到,获得积分10
9秒前
10秒前
10秒前
史夏兰完成签到,获得积分10
11秒前
一蓑烟雨任平生应助菠萝采纳,获得10
11秒前
李爱国应助qll采纳,获得10
12秒前
科研通AI5应助fisher采纳,获得30
12秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3765323
求助须知:如何正确求助?哪些是违规求助? 3309825
关于积分的说明 10152134
捐赠科研通 3025137
什么是DOI,文献DOI怎么找? 1660434
邀请新用户注册赠送积分活动 793237
科研通“疑难数据库(出版商)”最低求助积分说明 755495