清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Development and validation of convolutional neural network-based model to predict the risk of sentinel or non-sentinel lymph node metastasis in patients with breast cancer: a machine learning study

医学 前哨淋巴结 卷积神经网络 乳腺癌 转移 试验装置 人工智能 放射科 机器学习 肿瘤科 内科学 癌症 计算机科学
作者
Mingzhen Chen,Chunli Kong,Guihan Lin,Weiyue Chen,Xinyu Guo,Yaning Chen,Cheng Xue,Minjiang Chen,Changsheng Shi,Min Xu,Jun‐Hui Sun,Chenying Lu,Jiansong Ji
出处
期刊:EClinicalMedicine [Elsevier]
卷期号:63: 102176-102176 被引量:11
标识
DOI:10.1016/j.eclinm.2023.102176
摘要

Summary

Background

For patients with sentinel lymph node (SLN) metastasis and low risk of residual non-SLN (NSLN) metastasis, axillary lymph node (ALN) dissection could lead to overtreatment. This study aimed to develop and validate an automated preoperative deep learning-based tool to predict the risk of SLN and NSLN metastasis in patients with breast cancer (BC) using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) images.

Methods

In this machine learning study, we retrospectively enrolled 988 women with BC from three hospitals in Zhejiang, China between June 1, 2013 to December 31, 2021, June 1, 2017 to December 31, 2021, and January 1, 2019 to June 30, 2023, respectively. Patients were divided into the training set (n = 519), internal validation set (n = 129), external test set 1 (n = 296), and external test set 2 (n = 44). A convolutional neural network (CNN) model was proposed to predict the SLN and NSLN metastasis and was compared with clinical and radiomics approaches. The performance of different models to detect ALN metastasis was measured by the area under the curve (AUC), accuracy, sensitivity, and specificity. This study is registered at ChiCTR, ChiCTR2300070740.

Findings

For SLN prediction, the top-performing model (i.e., the CNN algorithm) achieved encouraging predictive performance in the internal validation set (AUC 0.899, 95% CI, 0.887–0.911), external test set 1 (AUC 0.885, 95% CI, 0.867–0.903), and external test set 2 (AUC 0.768, 95% CI, 0.738–0.798). For NSLN prediction, the CNN-based model also exhibited satisfactory performance in the internal validation set (AUC 0.800, 95% CI, 0.783–0.817), external test set 1 (AUC 0.763, 95% CI, 0.732–0.794), and external test set 2 (AUC 0.728, 95% CI, 0.719–0.738). Based on the subgroup analysis, the CNN model performed well in tumour group smaller than 2.0 cm, with the AUC of 0.801 (internal validation set) and 0.823 (external test set 1). Of 469 patients with BC, the false positive rate of SLN prediction declined from 77.9% to 32.9% using CNN model.

Interpretation

The CNN model can predict the SLN status of any detectable lesion size and condition of NSLN in patients with BC. Overall, the CNN model, employing ready DCE-MRI images could serve as a potential technique to assist surgeons in the personalized axillary treatment of in patients with BC non-invasively.

Funding

National Key Research and Development projects intergovernmental cooperation in science and technology of China, National Natural Science Foundation of China, Natural Science Foundation of Zhejiang Province, and Zhejiang Medical and Health Science Project.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助Z颖123采纳,获得10
15秒前
武汉出血王完成签到,获得积分10
1分钟前
Gary完成签到 ,获得积分10
1分钟前
yinhe完成签到 ,获得积分10
1分钟前
General完成签到 ,获得积分10
2分钟前
2分钟前
打打应助甘楽采纳,获得10
2分钟前
fighting完成签到,获得积分10
2分钟前
fighting发布了新的文献求助10
2分钟前
2分钟前
甘楽发布了新的文献求助10
2分钟前
鬼见愁完成签到,获得积分10
3分钟前
甘楽完成签到,获得积分10
3分钟前
richardzhang1984完成签到 ,获得积分10
3分钟前
3分钟前
Z颖123发布了新的文献求助10
3分钟前
自然涵易完成签到,获得积分10
3分钟前
aniu完成签到,获得积分10
3分钟前
玄黄大世界完成签到,获得积分10
4分钟前
秋夜临完成签到,获得积分10
4分钟前
香蕉觅云应助科研通管家采纳,获得10
4分钟前
emxzemxz完成签到 ,获得积分10
4分钟前
widesky777完成签到 ,获得积分0
4分钟前
jlwang发布了新的文献求助10
4分钟前
naczx完成签到,获得积分10
5分钟前
风秋杨完成签到 ,获得积分10
5分钟前
亮总完成签到 ,获得积分10
5分钟前
sherry完成签到 ,获得积分10
5分钟前
潇洒的语蝶完成签到 ,获得积分10
5分钟前
海鹏完成签到 ,获得积分10
5分钟前
一白完成签到 ,获得积分10
5分钟前
井小浩完成签到 ,获得积分10
6分钟前
乐正怡完成签到 ,获得积分10
6分钟前
领导范儿应助xun采纳,获得10
6分钟前
玉汝于成完成签到 ,获得积分10
6分钟前
mochalv123完成签到 ,获得积分10
6分钟前
姚芭蕉完成签到 ,获得积分0
6分钟前
数乱了梨花完成签到 ,获得积分10
6分钟前
Hiaoliem完成签到 ,获得积分10
6分钟前
7分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146832
求助须知:如何正确求助?哪些是违规求助? 2798126
关于积分的说明 7826730
捐赠科研通 2454695
什么是DOI,文献DOI怎么找? 1306428
科研通“疑难数据库(出版商)”最低求助积分说明 627788
版权声明 601565