已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development and validation of convolutional neural network-based model to predict the risk of sentinel or non-sentinel lymph node metastasis in patients with breast cancer: a machine learning study

医学 前哨淋巴结 卷积神经网络 乳腺癌 转移 试验装置 人工智能 放射科 机器学习 肿瘤科 内科学 癌症 计算机科学
作者
Mingzhen Chen,Chunli Kong,Guihan Lin,Weiyue Chen,Xinyu Guo,Yaning Chen,Cheng Xue,Minjiang Chen,Changsheng Shi,Min Xu,Jun‐Hui Sun,Chenying Lu,Jiansong Ji
出处
期刊:EClinicalMedicine [Elsevier]
卷期号:63: 102176-102176 被引量:11
标识
DOI:10.1016/j.eclinm.2023.102176
摘要

Summary

Background

For patients with sentinel lymph node (SLN) metastasis and low risk of residual non-SLN (NSLN) metastasis, axillary lymph node (ALN) dissection could lead to overtreatment. This study aimed to develop and validate an automated preoperative deep learning-based tool to predict the risk of SLN and NSLN metastasis in patients with breast cancer (BC) using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) images.

Methods

In this machine learning study, we retrospectively enrolled 988 women with BC from three hospitals in Zhejiang, China between June 1, 2013 to December 31, 2021, June 1, 2017 to December 31, 2021, and January 1, 2019 to June 30, 2023, respectively. Patients were divided into the training set (n = 519), internal validation set (n = 129), external test set 1 (n = 296), and external test set 2 (n = 44). A convolutional neural network (CNN) model was proposed to predict the SLN and NSLN metastasis and was compared with clinical and radiomics approaches. The performance of different models to detect ALN metastasis was measured by the area under the curve (AUC), accuracy, sensitivity, and specificity. This study is registered at ChiCTR, ChiCTR2300070740.

Findings

For SLN prediction, the top-performing model (i.e., the CNN algorithm) achieved encouraging predictive performance in the internal validation set (AUC 0.899, 95% CI, 0.887–0.911), external test set 1 (AUC 0.885, 95% CI, 0.867–0.903), and external test set 2 (AUC 0.768, 95% CI, 0.738–0.798). For NSLN prediction, the CNN-based model also exhibited satisfactory performance in the internal validation set (AUC 0.800, 95% CI, 0.783–0.817), external test set 1 (AUC 0.763, 95% CI, 0.732–0.794), and external test set 2 (AUC 0.728, 95% CI, 0.719–0.738). Based on the subgroup analysis, the CNN model performed well in tumour group smaller than 2.0 cm, with the AUC of 0.801 (internal validation set) and 0.823 (external test set 1). Of 469 patients with BC, the false positive rate of SLN prediction declined from 77.9% to 32.9% using CNN model.

Interpretation

The CNN model can predict the SLN status of any detectable lesion size and condition of NSLN in patients with BC. Overall, the CNN model, employing ready DCE-MRI images could serve as a potential technique to assist surgeons in the personalized axillary treatment of in patients with BC non-invasively.

Funding

National Key Research and Development projects intergovernmental cooperation in science and technology of China, National Natural Science Foundation of China, Natural Science Foundation of Zhejiang Province, and Zhejiang Medical and Health Science Project.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ilovelr发布了新的文献求助50
1秒前
fiife应助千与采纳,获得10
1秒前
4秒前
须眉交白完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
傲娇的小松鼠完成签到 ,获得积分10
7秒前
YYY发布了新的文献求助10
9秒前
hnx1005完成签到 ,获得积分10
10秒前
Ttttsyu发布了新的文献求助10
10秒前
奥特曼发布了新的文献求助10
10秒前
研友_LXjdOZ发布了新的文献求助20
10秒前
11秒前
RC发布了新的文献求助10
11秒前
完美世界应助yu采纳,获得10
11秒前
欢喜烧鹅发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
听宇完成签到,获得积分20
12秒前
惕守应助不信人间有白头采纳,获得10
12秒前
13秒前
Jojo发布了新的文献求助10
14秒前
悬铃木发布了新的文献求助10
15秒前
WWW发布了新的文献求助10
16秒前
科研通AI6应助橘猫123456采纳,获得10
16秒前
现代的雪枫完成签到,获得积分10
16秒前
张凌发布了新的文献求助10
16秒前
黄震洋完成签到,获得积分10
17秒前
leslie应助gqz采纳,获得20
18秒前
瓶子君152完成签到,获得积分10
20秒前
紫菜发布了新的文献求助10
20秒前
香蕉觅云应助yunshui采纳,获得10
21秒前
SciGPT应助Jojo采纳,获得10
22秒前
乐乐应助hulian采纳,获得10
25秒前
Abra发布了新的文献求助10
25秒前
26秒前
26秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590041
求助须知:如何正确求助?哪些是违规求助? 4674484
关于积分的说明 14794065
捐赠科研通 4629905
什么是DOI,文献DOI怎么找? 2532488
邀请新用户注册赠送积分活动 1501195
关于科研通互助平台的介绍 1468558