Development and validation of convolutional neural network-based model to predict the risk of sentinel or non-sentinel lymph node metastasis in patients with breast cancer: a machine learning study

医学 前哨淋巴结 卷积神经网络 乳腺癌 转移 试验装置 人工智能 放射科 机器学习 肿瘤科 内科学 癌症 计算机科学
作者
Mingzhen Chen,Chunli Kong,Guihan Lin,Weiyue Chen,Xinyu Guo,Yaning Chen,Cheng Xue,Minjiang Chen,Changsheng Shi,Min Xu,Jun‐Hui Sun,Chenying Lu,Jiansong Ji
出处
期刊:EClinicalMedicine [Elsevier BV]
卷期号:63: 102176-102176 被引量:11
标识
DOI:10.1016/j.eclinm.2023.102176
摘要

Summary

Background

For patients with sentinel lymph node (SLN) metastasis and low risk of residual non-SLN (NSLN) metastasis, axillary lymph node (ALN) dissection could lead to overtreatment. This study aimed to develop and validate an automated preoperative deep learning-based tool to predict the risk of SLN and NSLN metastasis in patients with breast cancer (BC) using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) images.

Methods

In this machine learning study, we retrospectively enrolled 988 women with BC from three hospitals in Zhejiang, China between June 1, 2013 to December 31, 2021, June 1, 2017 to December 31, 2021, and January 1, 2019 to June 30, 2023, respectively. Patients were divided into the training set (n = 519), internal validation set (n = 129), external test set 1 (n = 296), and external test set 2 (n = 44). A convolutional neural network (CNN) model was proposed to predict the SLN and NSLN metastasis and was compared with clinical and radiomics approaches. The performance of different models to detect ALN metastasis was measured by the area under the curve (AUC), accuracy, sensitivity, and specificity. This study is registered at ChiCTR, ChiCTR2300070740.

Findings

For SLN prediction, the top-performing model (i.e., the CNN algorithm) achieved encouraging predictive performance in the internal validation set (AUC 0.899, 95% CI, 0.887–0.911), external test set 1 (AUC 0.885, 95% CI, 0.867–0.903), and external test set 2 (AUC 0.768, 95% CI, 0.738–0.798). For NSLN prediction, the CNN-based model also exhibited satisfactory performance in the internal validation set (AUC 0.800, 95% CI, 0.783–0.817), external test set 1 (AUC 0.763, 95% CI, 0.732–0.794), and external test set 2 (AUC 0.728, 95% CI, 0.719–0.738). Based on the subgroup analysis, the CNN model performed well in tumour group smaller than 2.0 cm, with the AUC of 0.801 (internal validation set) and 0.823 (external test set 1). Of 469 patients with BC, the false positive rate of SLN prediction declined from 77.9% to 32.9% using CNN model.

Interpretation

The CNN model can predict the SLN status of any detectable lesion size and condition of NSLN in patients with BC. Overall, the CNN model, employing ready DCE-MRI images could serve as a potential technique to assist surgeons in the personalized axillary treatment of in patients with BC non-invasively.

Funding

National Key Research and Development projects intergovernmental cooperation in science and technology of China, National Natural Science Foundation of China, Natural Science Foundation of Zhejiang Province, and Zhejiang Medical and Health Science Project.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
山泽通气发布了新的文献求助10
2秒前
3秒前
SciGPT应助杭飞莲采纳,获得10
5秒前
5秒前
xzza完成签到,获得积分10
6秒前
天天快乐应助guojingjing采纳,获得10
7秒前
7秒前
Maxine完成签到 ,获得积分10
8秒前
8秒前
朴素海亦发布了新的文献求助10
9秒前
Maga发布了新的文献求助10
9秒前
ling发布了新的文献求助10
9秒前
Lucas应助诺诺诺诺万采纳,获得10
10秒前
顾惊蛰完成签到,获得积分10
11秒前
11秒前
14秒前
研友_8QyXr8发布了新的文献求助10
14秒前
张涛发布了新的文献求助30
14秒前
Maga完成签到,获得积分10
15秒前
16秒前
18秒前
杭飞莲发布了新的文献求助10
20秒前
路老师完成签到,获得积分10
21秒前
医路潜行完成签到,获得积分10
21秒前
ED应助雪白的面包采纳,获得10
21秒前
胡霖完成签到,获得积分10
22秒前
guojingjing发布了新的文献求助10
23秒前
研友_8QyXr8完成签到,获得积分10
24秒前
25秒前
kk完成签到,获得积分10
27秒前
ccx发布了新的文献求助10
30秒前
155发布了新的文献求助10
30秒前
chaoshen完成签到,获得积分10
31秒前
zhangsir发布了新的文献求助10
34秒前
栗子呢呢呢完成签到 ,获得积分10
37秒前
温冰雪应助000采纳,获得10
38秒前
李健应助迷人问兰采纳,获得30
39秒前
39秒前
爆米花发布了新的文献求助10
40秒前
量子星尘发布了新的文献求助10
41秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952555
求助须知:如何正确求助?哪些是违规求助? 3498015
关于积分的说明 11089696
捐赠科研通 3228463
什么是DOI,文献DOI怎么找? 1784978
邀请新用户注册赠送积分活动 869059
科研通“疑难数据库(出版商)”最低求助积分说明 801309