亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development and validation of convolutional neural network-based model to predict the risk of sentinel or non-sentinel lymph node metastasis in patients with breast cancer: a machine learning study

医学 前哨淋巴结 卷积神经网络 乳腺癌 转移 试验装置 人工智能 放射科 机器学习 肿瘤科 内科学 癌症 计算机科学
作者
Mingzhen Chen,Chunli Kong,Guihan Lin,Weiyue Chen,Xinyu Guo,Yaning Chen,Cheng Xue,Minjiang Chen,Changsheng Shi,Min Xu,Jun‐Hui Sun,Chenying Lu,Jiansong Ji
出处
期刊:EClinicalMedicine [Elsevier]
卷期号:63: 102176-102176 被引量:11
标识
DOI:10.1016/j.eclinm.2023.102176
摘要

Summary

Background

For patients with sentinel lymph node (SLN) metastasis and low risk of residual non-SLN (NSLN) metastasis, axillary lymph node (ALN) dissection could lead to overtreatment. This study aimed to develop and validate an automated preoperative deep learning-based tool to predict the risk of SLN and NSLN metastasis in patients with breast cancer (BC) using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) images.

Methods

In this machine learning study, we retrospectively enrolled 988 women with BC from three hospitals in Zhejiang, China between June 1, 2013 to December 31, 2021, June 1, 2017 to December 31, 2021, and January 1, 2019 to June 30, 2023, respectively. Patients were divided into the training set (n = 519), internal validation set (n = 129), external test set 1 (n = 296), and external test set 2 (n = 44). A convolutional neural network (CNN) model was proposed to predict the SLN and NSLN metastasis and was compared with clinical and radiomics approaches. The performance of different models to detect ALN metastasis was measured by the area under the curve (AUC), accuracy, sensitivity, and specificity. This study is registered at ChiCTR, ChiCTR2300070740.

Findings

For SLN prediction, the top-performing model (i.e., the CNN algorithm) achieved encouraging predictive performance in the internal validation set (AUC 0.899, 95% CI, 0.887–0.911), external test set 1 (AUC 0.885, 95% CI, 0.867–0.903), and external test set 2 (AUC 0.768, 95% CI, 0.738–0.798). For NSLN prediction, the CNN-based model also exhibited satisfactory performance in the internal validation set (AUC 0.800, 95% CI, 0.783–0.817), external test set 1 (AUC 0.763, 95% CI, 0.732–0.794), and external test set 2 (AUC 0.728, 95% CI, 0.719–0.738). Based on the subgroup analysis, the CNN model performed well in tumour group smaller than 2.0 cm, with the AUC of 0.801 (internal validation set) and 0.823 (external test set 1). Of 469 patients with BC, the false positive rate of SLN prediction declined from 77.9% to 32.9% using CNN model.

Interpretation

The CNN model can predict the SLN status of any detectable lesion size and condition of NSLN in patients with BC. Overall, the CNN model, employing ready DCE-MRI images could serve as a potential technique to assist surgeons in the personalized axillary treatment of in patients with BC non-invasively.

Funding

National Key Research and Development projects intergovernmental cooperation in science and technology of China, National Natural Science Foundation of China, Natural Science Foundation of Zhejiang Province, and Zhejiang Medical and Health Science Project.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
腼腆钵钵鸡完成签到 ,获得积分10
1秒前
CodeCraft应助123456采纳,获得10
1秒前
2秒前
小二郎应助shinn采纳,获得10
2秒前
绝山完成签到,获得积分10
3秒前
flyabc完成签到,获得积分10
5秒前
大模型应助满意的觅夏采纳,获得10
6秒前
害羞的醉卉完成签到 ,获得积分10
7秒前
8秒前
11秒前
11秒前
aaaa发布了新的文献求助10
14秒前
麻瓜完成签到,获得积分10
17秒前
18秒前
18秒前
20秒前
21秒前
shinn发布了新的文献求助10
23秒前
科研通AI6.1应助aaaa采纳,获得10
24秒前
李琪发布了新的文献求助10
24秒前
闰土完成签到 ,获得积分10
26秒前
merry6669发布了新的文献求助10
28秒前
华仔应助chenchunli采纳,获得10
39秒前
noneface完成签到,获得积分10
41秒前
BYGYHQ完成签到 ,获得积分10
42秒前
领导范儿应助shinn采纳,获得10
43秒前
科研通AI6.1应助北宸采纳,获得10
46秒前
49秒前
科研通AI6.1应助js采纳,获得10
50秒前
嘻嘻完成签到 ,获得积分10
51秒前
51秒前
53秒前
53秒前
54秒前
57秒前
58秒前
shinn发布了新的文献求助10
58秒前
岂曰无衣发布了新的文献求助10
59秒前
YHYY完成签到,获得积分20
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772179
求助须知:如何正确求助?哪些是违规求助? 5596564
关于积分的说明 15429271
捐赠科研通 4905254
什么是DOI,文献DOI怎么找? 2639292
邀请新用户注册赠送积分活动 1587214
关于科研通互助平台的介绍 1542061