Constructing bilayer-mesoporous structure in molecularly imprinted nanocomposite membranes for efficient separation of acteoside

介孔材料 双层 纳米复合材料 聚偏氟乙烯 化学工程 选择性 材料科学 纳米技术 化学 有机化学 催化作用 生物化学 工程类
作者
Chen Chen,Yingying Fan,Yun Cheng,Qiong Zhang,Xueqin Li,Jinli Zhang
出处
期刊:Separation and Purification Technology [Elsevier]
卷期号:327: 124895-124895 被引量:6
标识
DOI:10.1016/j.seppur.2023.124895
摘要

The main active component of Cistanche tubulosa is acteoside (ACT), which is difficult to separate due to its low content. Therefore, it is important to develop an efficient method for efficient separation of ACT. Herein, the ACT-based molecularly imprinted nanocomposite membranes (A-MINMs) doped with bilayer-mesoporous carbon nanospheres (BMCNs) were fabricated for efficient separation of ACT. The designed BMCNs mixed with polyvinylidene fluoride (PVDF) powders to prepare the hybrid membranes (BMCNs@PVDF) by a phase inversion method. Then, a sol–gel method was used to synthesize the ACT-imprinted layer on the BMCNs@PVDF. The A-MINMs-400 synthesized under the given conditions demonstrated an excellent rebinding capacity of 114.94 mg/g, the brilliant permselectivity of 7.15, and the rebinding selectivity of 4.48. It mainly attributed to the following three reasons: (i) The designed BMCNs possessed a well-defined bilayer-mesoporous structure composed of the mesoporous carbon shell, interlayer void, and mesoporous carbon core. This bilayer-mesoporous structure can construct the efficient shell@void@core@void@shell pathways in A-MINMs for intercepting ACT molecules through the A-MINMs. (ii) The interlayer void structure can provide a large space for accommodating ACT molecules, thereby enhancing the rebinding capacities of A-MINMs. (iii) The introduced BMCNs nanofillers facilitated to form the abundant ACT-imprinted sites and cavities, improving the selectivity of A-MINMs for ACT. Therefore, the development and design of A-MINMs with bilayer-mesoporous nanofillers had a great potential for efficient separation of bioactive active constituents from natural products.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助上山的吗喽采纳,获得30
1秒前
大模型应助好不了一丶采纳,获得10
1秒前
破绽完成签到,获得积分10
1秒前
Kirsten完成签到,获得积分10
2秒前
FashionBoy应助呆一起采纳,获得10
2秒前
3秒前
刻苦东蒽完成签到,获得积分10
3秒前
liu发布了新的文献求助10
3秒前
上官若男应助TG采纳,获得10
4秒前
FashionBoy应助wlnhyF采纳,获得10
5秒前
10711发布了新的文献求助10
6秒前
wuuw发布了新的文献求助20
7秒前
8秒前
呈歌完成签到 ,获得积分10
8秒前
9秒前
9秒前
酸酸发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
虚拟的纸鹤完成签到 ,获得积分10
10秒前
万能图书馆应助10711采纳,获得10
11秒前
思源应助guan采纳,获得10
11秒前
11秒前
11秒前
乐观的小鸡完成签到,获得积分10
11秒前
12秒前
慧慧完成签到 ,获得积分10
12秒前
Jasper应助liu采纳,获得10
13秒前
大方岩完成签到,获得积分10
14秒前
岳元满完成签到,获得积分20
14秒前
超超发布了新的文献求助10
14秒前
廖喜林发布了新的文献求助10
14秒前
vvA11完成签到,获得积分10
15秒前
15秒前
15秒前
浅风完成签到,获得积分10
16秒前
TANG发布了新的文献求助20
16秒前
呆一起发布了新的文献求助10
17秒前
vvA11发布了新的文献求助10
17秒前
桔梗发布了新的文献求助10
17秒前
李健应助hubery采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642103
求助须知:如何正确求助?哪些是违规求助? 4758150
关于积分的说明 15016411
捐赠科研通 4800600
什么是DOI,文献DOI怎么找? 2566140
邀请新用户注册赠送积分活动 1524244
关于科研通互助平台的介绍 1483901