A decision tree model to predict liver cirrhosis in hepatocellular carcinoma patients: a retrospective study

肝硬化 医学 肝细胞癌 接收机工作特性 决策树模型 逻辑回归 决策树 内科学 胃肠病学 放射科 机器学习 计算机科学
作者
Zheyu Zhou,Chaobo Chen,Meiling Sun,Xiaoliang Xu,Yang Liu,Qiaoyu Liu,Jincheng Wang,Yin Yin,Beicheng Sun
出处
期刊:PeerJ [PeerJ]
卷期号:11: e15950-e15950 被引量:2
标识
DOI:10.7717/peerj.15950
摘要

The severity of liver cirrhosis in hepatocellular carcinoma (HCC) patients is essential for determining the scope of surgical resection. It also affects the long-term efficacy of systemic anti-tumor therapy and transcatheter arterial chemoembolization (TACE). Non-invasive tools, including aspartate aminotransferase to platelet ratio index (APRI), fibrosis-4 (FIB-4), and γ-glutamyl transferase to platelet ratio (GPR), are less accurate in predicting cirrhosis in HCC patients. We aimed to build a novel decision tree model to improve diagnostic accuracy of liver cirrhosis.The Mann-Whitney U test, χ2 test, and multivariate logistic regression analysis were used to identify independent cirrhosis predictors. A decision tree model was developed using machine learning algorithms in a training cohort of 141 HCC patients. Internal validation was conducted in 99 HCC patients. The diagnostic accuracy and calibration of the established model were evaluated using receiver operating characteristic (ROC) and calibration curves, respectively.Sex and platelet count were identified as independent cirrhosis predictors. A decision tree model integrating imaging-reported cirrhosis, APRI, FIB-4, and GPR was established. The novel model had an excellent diagnostic performance in the training and validation cohorts, with area under the curve (AUC) values of 0.853 and 0.817, respectively. Calibration curves and the Hosmer-Lemeshow test showed good calibration of the novel model. The decision curve analysis (DCA) indicated that the decision tree model could provide a larger net benefit to predict liver cirrhosis.Our developed decision tree model could successfully predict liver cirrhosis in HCC patients, which may be helpful in clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
烟花应助种桃老总采纳,获得10
3秒前
3秒前
4秒前
4秒前
zqz421发布了新的文献求助10
5秒前
cocolu应助文静三颜采纳,获得10
6秒前
6秒前
帅气白云发布了新的文献求助10
7秒前
不来应助香蕉茹妖采纳,获得10
9秒前
牧童羽发布了新的文献求助10
9秒前
年轻的凤完成签到,获得积分10
10秒前
10秒前
心杨发布了新的文献求助10
12秒前
鱼鱼鱼完成签到,获得积分10
13秒前
苏七完成签到,获得积分10
13秒前
萨尔莫斯完成签到,获得积分10
13秒前
14秒前
白头蝰完成签到,获得积分10
14秒前
14秒前
14秒前
英俊的铭应助cc采纳,获得10
14秒前
Moliria发布了新的文献求助10
15秒前
Orange应助马克采纳,获得10
18秒前
18秒前
兜兜发布了新的文献求助10
18秒前
xiaoxiao发布了新的文献求助10
18秒前
慕青应助活泼平凡采纳,获得10
19秒前
20秒前
Hello应助碧蓝板栗采纳,获得20
22秒前
zc完成签到,获得积分20
22秒前
在水一方应助加菲丰丰采纳,获得50
23秒前
心杨完成签到,获得积分10
23秒前
123发布了新的文献求助10
23秒前
上官若男应助楚狂接舆采纳,获得10
24秒前
处处吻完成签到 ,获得积分10
25秒前
Akim应助gogogo采纳,获得10
25秒前
cc发布了新的文献求助10
26秒前
26秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330040
求助须知:如何正确求助?哪些是违规求助? 2959654
关于积分的说明 8596227
捐赠科研通 2638022
什么是DOI,文献DOI怎么找? 1444115
科研通“疑难数据库(出版商)”最低求助积分说明 668935
邀请新用户注册赠送积分活动 656517