A decision tree model to predict liver cirrhosis in hepatocellular carcinoma patients: a retrospective study

肝硬化 医学 肝细胞癌 接收机工作特性 决策树模型 逻辑回归 决策树 内科学 胃肠病学 放射科 机器学习 计算机科学
作者
Zheyu Zhou,Chaobo Chen,Meiling Sun,Xiaoliang Xu,Yang Liu,Qiaoyu Liu,Jincheng Wang,Yin Yin,Beicheng Sun
出处
期刊:PeerJ [PeerJ]
卷期号:11: e15950-e15950 被引量:2
标识
DOI:10.7717/peerj.15950
摘要

The severity of liver cirrhosis in hepatocellular carcinoma (HCC) patients is essential for determining the scope of surgical resection. It also affects the long-term efficacy of systemic anti-tumor therapy and transcatheter arterial chemoembolization (TACE). Non-invasive tools, including aspartate aminotransferase to platelet ratio index (APRI), fibrosis-4 (FIB-4), and γ-glutamyl transferase to platelet ratio (GPR), are less accurate in predicting cirrhosis in HCC patients. We aimed to build a novel decision tree model to improve diagnostic accuracy of liver cirrhosis.The Mann-Whitney U test, χ2 test, and multivariate logistic regression analysis were used to identify independent cirrhosis predictors. A decision tree model was developed using machine learning algorithms in a training cohort of 141 HCC patients. Internal validation was conducted in 99 HCC patients. The diagnostic accuracy and calibration of the established model were evaluated using receiver operating characteristic (ROC) and calibration curves, respectively.Sex and platelet count were identified as independent cirrhosis predictors. A decision tree model integrating imaging-reported cirrhosis, APRI, FIB-4, and GPR was established. The novel model had an excellent diagnostic performance in the training and validation cohorts, with area under the curve (AUC) values of 0.853 and 0.817, respectively. Calibration curves and the Hosmer-Lemeshow test showed good calibration of the novel model. The decision curve analysis (DCA) indicated that the decision tree model could provide a larger net benefit to predict liver cirrhosis.Our developed decision tree model could successfully predict liver cirrhosis in HCC patients, which may be helpful in clinical decision-making.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助瑰慈采纳,获得10
刚刚
量子星尘发布了新的文献求助30
刚刚
研友_VZG7GZ应助like采纳,获得10
1秒前
科研韭菜发布了新的文献求助10
3秒前
4秒前
Suki发布了新的文献求助10
4秒前
4秒前
mirror应助xiang采纳,获得10
4秒前
深年完成签到,获得积分10
5秒前
慕青应助浮云采纳,获得10
7秒前
Everglow完成签到,获得积分10
7秒前
7秒前
6666应助djbj2022采纳,获得10
8秒前
山下梅子酒完成签到 ,获得积分10
9秒前
9秒前
Ava应助木子李采纳,获得10
9秒前
9秒前
6666应助ichia采纳,获得10
10秒前
科研通AI2S应助无语的代真采纳,获得10
10秒前
10秒前
11秒前
12秒前
嗯呐发布了新的文献求助10
14秒前
kk完成签到 ,获得积分10
14秒前
14秒前
善莫大焉发布了新的文献求助10
14秒前
小怪完成签到,获得积分10
14秒前
like发布了新的文献求助10
15秒前
秦风发布了新的文献求助10
16秒前
无奈的醉薇完成签到,获得积分10
17秒前
17秒前
邢江利发布了新的文献求助10
18秒前
Ava应助尤小玉采纳,获得10
18秒前
18秒前
18秒前
叶帆完成签到,获得积分20
18秒前
19秒前
19秒前
尘曦完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5737437
求助须知:如何正确求助?哪些是违规求助? 5372472
关于积分的说明 15335484
捐赠科研通 4880930
什么是DOI,文献DOI怎么找? 2623186
邀请新用户注册赠送积分活动 1571999
关于科研通互助平台的介绍 1528811