Modeling and multi-objective optimization of abrasive water jet machining process of composite laminates using a hybrid approach based on neural networks and metaheuristic algorithm

导线 机械加工 磨料 材料科学 人工神经网络 表面粗糙度 背景(考古学) 机械工程 实验设计 计算机科学 算法 复合材料 工程类 数学 机器学习 冶金 地质学 古生物学 统计 大地测量学
作者
Faten Chaouch,Ated Ben Khalifa,Rédouane Zitoune,Mondher Zidi
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture [SAGE]
卷期号:238 (9): 1351-1361 被引量:10
标识
DOI:10.1177/09544054231191816
摘要

Although the abrasive water jet (AWJ) has proven to be a suitable process for machining composite materials, it has some limitations related to dimensional inaccuracy and surface defects. As the performance of the AWJ process mainly depends on the machining parameters, an optimal selection of them is crucial to achieving an improved quality of cut. In this context, the present study reports an experimental investigation to assess the influence of AWJ machining parameters on kerf taper angle (θ) and surface roughness ( R a ) of E glass/Vinylester 411 resin laminates. The experiments are carried out using a full factorial design by varying the water pressure, traverse speed, abrasive flow rate, and standoff distance. A first-ever attempt is made in this paper to optimize the AWJ process using a hybrid approach combining artificial neural networks (ANNs) with a recently proposed metaheuristic algorithm known as multi-objective bonobo optimizer (MOBO). The results show that standoff distance and abrasive flow rate were the most significant control factors in influencing θ and R a , respectively. The developed ANN models are capable to predict the output responses with high accuracy and the solutions from the Pareto front provide a sufficient performance with a trade-off between θ and R a . The corresponding levels of the optimal process parameters are 430 g/min for the abrasive flow rate, the range of 140–180 mm/min for the traverse speed, 280 MPa for the pressure, and 1.5 mm for the standoff distance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
clear完成签到,获得积分20
刚刚
刚刚
orixero应助congguitar采纳,获得10
刚刚
Evan完成签到,获得积分10
刚刚
YANG发布了新的文献求助10
1秒前
1秒前
123发布了新的文献求助10
1秒前
sunzhiyu233发布了新的文献求助10
2秒前
Raul完成签到 ,获得积分10
2秒前
2秒前
伯尔尼圆白菜完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
3秒前
buuyoo完成签到,获得积分10
3秒前
科研通AI5应助魏煜佳采纳,获得10
3秒前
LLxiaolong完成签到,获得积分10
3秒前
4秒前
4秒前
巨噬细胞A完成签到,获得积分10
4秒前
4秒前
我要读博士完成签到 ,获得积分10
4秒前
xxq完成签到,获得积分20
4秒前
福气小姐完成签到 ,获得积分10
4秒前
搜集达人应助jjy采纳,获得10
5秒前
5秒前
郑总完成签到,获得积分10
5秒前
CipherSage应助马尼拉采纳,获得10
5秒前
SCI完成签到 ,获得积分10
6秒前
7秒前
healer发布了新的文献求助10
7秒前
123完成签到,获得积分20
8秒前
李健的小迷弟应助yili采纳,获得10
8秒前
L.完成签到,获得积分10
8秒前
木子发布了新的文献求助10
8秒前
威武诺言发布了新的文献求助10
8秒前
科研通AI5应助孙二二采纳,获得10
8秒前
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759