Modeling and multi-objective optimization of abrasive water jet machining process of composite laminates using a hybrid approach based on neural networks and metaheuristic algorithm

导线 机械加工 磨料 材料科学 人工神经网络 表面粗糙度 背景(考古学) 机械工程 实验设计 计算机科学 算法 复合材料 工程类 数学 机器学习 冶金 地质学 古生物学 统计 大地测量学
作者
Faten Chaouch,Ated Ben Khalifa,Rédouane Zitoune,Mondher Zidi
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture [SAGE]
卷期号:238 (9): 1351-1361 被引量:10
标识
DOI:10.1177/09544054231191816
摘要

Although the abrasive water jet (AWJ) has proven to be a suitable process for machining composite materials, it has some limitations related to dimensional inaccuracy and surface defects. As the performance of the AWJ process mainly depends on the machining parameters, an optimal selection of them is crucial to achieving an improved quality of cut. In this context, the present study reports an experimental investigation to assess the influence of AWJ machining parameters on kerf taper angle (θ) and surface roughness ( R a ) of E glass/Vinylester 411 resin laminates. The experiments are carried out using a full factorial design by varying the water pressure, traverse speed, abrasive flow rate, and standoff distance. A first-ever attempt is made in this paper to optimize the AWJ process using a hybrid approach combining artificial neural networks (ANNs) with a recently proposed metaheuristic algorithm known as multi-objective bonobo optimizer (MOBO). The results show that standoff distance and abrasive flow rate were the most significant control factors in influencing θ and R a , respectively. The developed ANN models are capable to predict the output responses with high accuracy and the solutions from the Pareto front provide a sufficient performance with a trade-off between θ and R a . The corresponding levels of the optimal process parameters are 430 g/min for the abrasive flow rate, the range of 140–180 mm/min for the traverse speed, 280 MPa for the pressure, and 1.5 mm for the standoff distance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_ZzrWKZ完成签到 ,获得积分10
刚刚
樱桃窝窝头完成签到,获得积分10
2秒前
懵懂的绿真完成签到,获得积分10
3秒前
4秒前
5秒前
w。发布了新的文献求助10
5秒前
llzzyy完成签到,获得积分10
6秒前
6秒前
TRz发布了新的文献求助10
9秒前
9秒前
在水一方应助w。采纳,获得10
9秒前
搜集达人应助llzzyy采纳,获得10
10秒前
迅速灵竹发布了新的文献求助10
11秒前
Lee发布了新的文献求助10
12秒前
今后应助可耐的玉米采纳,获得10
13秒前
Dryad完成签到,获得积分10
13秒前
无奈的雪碧完成签到,获得积分10
14秒前
15秒前
Fiona完成签到 ,获得积分10
15秒前
Lucas应助楠楠采纳,获得10
15秒前
ccc完成签到,获得积分10
16秒前
科研圈外人完成签到 ,获得积分10
19秒前
加油应助ZME采纳,获得10
19秒前
19秒前
19秒前
lbc完成签到,获得积分10
19秒前
19秒前
果粒橙完成签到 ,获得积分10
21秒前
hkh完成签到,获得积分10
22秒前
azr应助liu采纳,获得10
22秒前
TRz完成签到,获得积分10
23秒前
23秒前
虚幻代桃发布了新的文献求助10
23秒前
葉鳳怡完成签到 ,获得积分10
24秒前
24秒前
星星完成签到,获得积分10
25秒前
李健的粉丝团团长应助L100采纳,获得30
25秒前
27秒前
27秒前
深情安青应助yiooo采纳,获得30
28秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308460
求助须知:如何正确求助?哪些是违规求助? 2941800
关于积分的说明 8505840
捐赠科研通 2616702
什么是DOI,文献DOI怎么找? 1429755
科研通“疑难数据库(出版商)”最低求助积分说明 663888
邀请新用户注册赠送积分活动 648967