作者
Shuyi Deng,Anqi Guo,Zhengwei Huang,Kaiyu Guan,Ya Zhu,Chee–Kai Chan,Jian‐Fang Gui,Cai Song,Xi Li
摘要
Inflammation stimulates the hypothalamic-pituitary adrenal (HPA) axis and triggers glial neuroinflammatory phenotypes, which reduces monoamine neurotransmitters by activating indoleamine 2,3-dioxygenase enzyme. These changes can induce psychiatric diseases, including anxiety. Corticotropin releasing hormone receptor 2 (CRHR2) in the HPA axis is involved in the etiology of anxiety. Omega(n)-3 polyunsaturated fatty acids (PUFAs) can attenuate anxiety through anti-inflammation and HPA axis modulation. However, the underlying molecular mechanism by CRHR2 modulates anxiety and its correlation with neuroinflammation remain unclear. Here, we first constructed a crhr2 zebrafish mutant line, and evaluated anxiety-like behaviors, gene expression associated with the HPA axis, neuroinflammatory response, neurotransmitters, and PUFAs profile in crhr2+/+ and crhr2-/- zebrafish. The crhr2 deficiency decreased cortisol levels and up-regulated crhr1 and down-regulated crhb, crhbp, ucn3l and proopiomelanocortin a (pomc a) in zebrafish. Interestingly, a significant increase in the neuroinflammatory markers, translocator protein (TSPO) and the activation of microglia M1 phenotype (CD11b) were found in crhr2-/- zebrafish. As a consequence, the expression of granulocyte-macrophage colony-stimulating factor, pro-inflammatory cytokines vascular endothelial growth factor, and astrocyte A1 phenotype c3 were up-regulated. While microglia anti-inflammatory phenotype (CD206), central anti-inflammatory cytokine interleukin-4, arginase-1, and transforming growth factor-β were downregulated. In parallel, crhr2-deficient zebrafish showed an upregulation of vdac1 protein, a TSPO ligand, and its downstream caspase-3. Furthermore, 5-HT/5-HIAA ratio was decreased and n-3 PUFAs deficiency was identified in crhr2-/- zebrafish. In conclusion, anxiety-like behavior displayed by crhr2-deficient zebrafish may be caused by the HPA axis dysfunction and enhanced neuroinflammation, which resulted in n-3 PUFAs and monoamine neurotransmitter reductions.