特征向量
先验与后验
扩散
理论(学习稳定性)
Neumann边界条件
植被(病理学)
简单(哲学)
不稳定性
图灵
数学
边值问题
图案形成
边界(拓扑)
应用数学
统计物理学
数学分析
计算机科学
物理
热力学
机械
认识论
遗传学
机器学习
哲学
病理
生物
程序设计语言
医学
量子力学
作者
Gaihui Guo,Jingjing Wang
标识
DOI:10.1016/j.nonrwa.2023.104008
摘要
In this paper, a diffusive vegetation-water model under Neumann boundary conditions is considered. Firstly, the stability and the diffusion-induced Turing instability are studied. Then, some a priori estimates of positive steady-state solutions are obtained by the maximum principle. Moreover, the bifurcations at both simple and double eigenvalues are investigated in detail. Finally, numerical simulations are shown to support and supplement theoretical analysis results. In particular, the evolution processes of vegetation patterns are depicted under different parameters.
科研通智能强力驱动
Strongly Powered by AbleSci AI