Using Unsupervised Machine Learning to Predict Quality of Life After Total Knee Arthroplasty

医学 患者报告的结果 物理疗法 人口统计学的 共病 生活质量(医疗保健) 关节置换术 骨科手术 体质指数 公制(单位) 全膝关节置换术 内科学 外科 人口学 经济 护理部 社会学 运营管理
作者
Jennifer Hunter,Farzan Soleymani,Herna L. Viktor,Wojtek Michalowski,Stéphane Poitras,Paul E. Beaulé
出处
期刊:Journal of Arthroplasty [Elsevier]
卷期号:39 (3): 677-682 被引量:1
标识
DOI:10.1016/j.arth.2023.09.027
摘要

Abstract

Background

Patient-reported outcome measures (PROMs) are an important metric to assess total knee arthroplasty (TKA) patients. The purpose of this study was to use a machine learning (ML) algorithm to identify patient features that impact PROMs after TKA.

Methods

Data from 636 TKA patients enrolled in our patient database between 2018 and 2022, were retrospectively reviewed. Their mean age was 68 years (range, 39 to 92), 56.7% women, and mean body mass index of 31.17 (range, 16 to 58). Patient demographics and the Functional Comorbidity Index were collected alongside Patient-Reported Outcome Measures Information System Global Health v1.2 (PROMIS GH-P) physical component scores preoperatively, at 3 months, and 1 year after TKA. An unsupervised ML algorithm (spectral clustering) was used to identify patient features impacting PROMIS GH-P scores at the various time points.

Results

The algorithm identified 5 patient clusters that varied by demographics, comorbidities, and pain scores. Each cluster was associated with predictable trends in PROMIS GH-P scores across the time points. Notably, patients who had the worst preoperative PROMIS GH-P scores (cluster 5) had the most improvement after TKA, whereas patients who had higher global health rating preoperatively had more modest improvement (clusters 1, 2, and 3). Two out of Five patient clusters (cluster 4 and 5) showed improvement in PROMIS GH-P scores that met a minimally clinically important difference at 1-year postoperative.

Conclusions

The unsupervised ML algorithm identified patient clusters that had predictable changes in PROMs after TKA. It is a positive step toward providing precision medical care for each of our arthroplasty patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zz发布了新的文献求助10
1秒前
1秒前
慕青应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
大个应助科研通管家采纳,获得10
2秒前
共享精神应助冰河的羊采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
marjorie应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
在水一方应助北沐采纳,获得10
3秒前
bkagyin应助科研通管家采纳,获得30
3秒前
Jasper应助wangayting采纳,获得10
3秒前
wanci应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
我是老大应助jrlhappy采纳,获得10
3秒前
suolonglong完成签到,获得积分10
3秒前
汉堡包应助nyfz2002采纳,获得10
3秒前
3秒前
6秒前
10秒前
10秒前
12秒前
amiaomiao完成签到,获得积分10
12秒前
13秒前
小L完成签到,获得积分10
15秒前
jrlhappy发布了新的文献求助10
15秒前
15秒前
在水一方应助gxnu123采纳,获得10
16秒前
小L发布了新的文献求助10
18秒前
顺利毕业发布了新的文献求助10
18秒前
juziyaya应助散逸层梦游采纳,获得50
19秒前
nyfz2002发布了新的文献求助10
19秒前
思源应助阿kkk采纳,获得10
23秒前
东风完成签到,获得积分10
23秒前
传奇3应助ssz采纳,获得10
24秒前
24秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141156
求助须知:如何正确求助?哪些是违规求助? 2792103
关于积分的说明 7801577
捐赠科研通 2448294
什么是DOI,文献DOI怎么找? 1302503
科研通“疑难数据库(出版商)”最低求助积分说明 626591
版权声明 601237