Using Unsupervised Machine Learning to Predict Quality of Life After Total Knee Arthroplasty

医学 患者报告的结果 物理疗法 人口统计学的 共病 生活质量(医疗保健) 关节置换术 骨科手术 体质指数 公制(单位) 全膝关节置换术 内科学 外科 人口学 经济 护理部 社会学 运营管理
作者
Jennifer Hunter,Farzan Soleymani,Herna L. Viktor,Wojtek Michalowski,Stéphane Poitras,Paul E. Beaulé
出处
期刊:Journal of Arthroplasty [Elsevier BV]
卷期号:39 (3): 677-682 被引量:4
标识
DOI:10.1016/j.arth.2023.09.027
摘要

Abstract

Background

Patient-reported outcome measures (PROMs) are an important metric to assess total knee arthroplasty (TKA) patients. The purpose of this study was to use a machine learning (ML) algorithm to identify patient features that impact PROMs after TKA.

Methods

Data from 636 TKA patients enrolled in our patient database between 2018 and 2022, were retrospectively reviewed. Their mean age was 68 years (range, 39 to 92), 56.7% women, and mean body mass index of 31.17 (range, 16 to 58). Patient demographics and the Functional Comorbidity Index were collected alongside Patient-Reported Outcome Measures Information System Global Health v1.2 (PROMIS GH-P) physical component scores preoperatively, at 3 months, and 1 year after TKA. An unsupervised ML algorithm (spectral clustering) was used to identify patient features impacting PROMIS GH-P scores at the various time points.

Results

The algorithm identified 5 patient clusters that varied by demographics, comorbidities, and pain scores. Each cluster was associated with predictable trends in PROMIS GH-P scores across the time points. Notably, patients who had the worst preoperative PROMIS GH-P scores (cluster 5) had the most improvement after TKA, whereas patients who had higher global health rating preoperatively had more modest improvement (clusters 1, 2, and 3). Two out of Five patient clusters (cluster 4 and 5) showed improvement in PROMIS GH-P scores that met a minimally clinically important difference at 1-year postoperative.

Conclusions

The unsupervised ML algorithm identified patient clusters that had predictable changes in PROMs after TKA. It is a positive step toward providing precision medical care for each of our arthroplasty patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张登秀关注了科研通微信公众号
3秒前
cbf完成签到,获得积分10
4秒前
xxxxyyyy1完成签到 ,获得积分10
4秒前
Yh_alive完成签到,获得积分10
5秒前
7秒前
田様应助丰富如南采纳,获得10
12秒前
啦啦啦啦啦完成签到 ,获得积分10
13秒前
眼睛大的乐儿完成签到,获得积分10
14秒前
15秒前
玥月完成签到 ,获得积分10
15秒前
在九月完成签到 ,获得积分10
16秒前
yk完成签到,获得积分10
18秒前
听风随影完成签到,获得积分20
19秒前
ding应助美好向彤采纳,获得10
20秒前
领导范儿应助ZhuYJ采纳,获得10
22秒前
听风随影发布了新的文献求助10
22秒前
沉默不言完成签到,获得积分20
23秒前
快乐仙知完成签到 ,获得积分10
27秒前
沉默不言发布了新的文献求助30
28秒前
可爱的函函应助听风随影采纳,获得10
29秒前
上官若男应助4356采纳,获得10
30秒前
33秒前
34秒前
35秒前
我先睡了发布了新的文献求助10
36秒前
ZhuYJ发布了新的文献求助10
38秒前
LL爱读书发布了新的文献求助10
39秒前
许三问完成签到 ,获得积分0
39秒前
40秒前
41秒前
空山新雨完成签到,获得积分10
42秒前
43秒前
44秒前
Kenzonvay发布了新的文献求助10
44秒前
英俊的铭应助春春采纳,获得10
45秒前
善良海云发布了新的文献求助10
47秒前
Jiangzhibing发布了新的文献求助10
48秒前
Hey发布了新的文献求助10
48秒前
烟花应助泡菜汤味豆腐采纳,获得10
49秒前
Tourist应助Akihiiiii采纳,获得20
53秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951007
求助须知:如何正确求助?哪些是违规求助? 3496402
关于积分的说明 11081862
捐赠科研通 3226913
什么是DOI,文献DOI怎么找? 1784005
邀请新用户注册赠送积分活动 868114
科研通“疑难数据库(出版商)”最低求助积分说明 801003