Using Unsupervised Machine Learning to Predict Quality of Life After Total Knee Arthroplasty

医学 患者报告的结果 物理疗法 人口统计学的 共病 生活质量(医疗保健) 关节置换术 骨科手术 体质指数 公制(单位) 全膝关节置换术 内科学 外科 人口学 经济 护理部 社会学 运营管理
作者
Jennifer Hunter,Farzan Soleymani,Herna L. Viktor,Wojtek Michalowski,Stéphane Poitras,Paul E. Beaulé
出处
期刊:Journal of Arthroplasty [Elsevier]
卷期号:39 (3): 677-682 被引量:4
标识
DOI:10.1016/j.arth.2023.09.027
摘要

Abstract

Background

Patient-reported outcome measures (PROMs) are an important metric to assess total knee arthroplasty (TKA) patients. The purpose of this study was to use a machine learning (ML) algorithm to identify patient features that impact PROMs after TKA.

Methods

Data from 636 TKA patients enrolled in our patient database between 2018 and 2022, were retrospectively reviewed. Their mean age was 68 years (range, 39 to 92), 56.7% women, and mean body mass index of 31.17 (range, 16 to 58). Patient demographics and the Functional Comorbidity Index were collected alongside Patient-Reported Outcome Measures Information System Global Health v1.2 (PROMIS GH-P) physical component scores preoperatively, at 3 months, and 1 year after TKA. An unsupervised ML algorithm (spectral clustering) was used to identify patient features impacting PROMIS GH-P scores at the various time points.

Results

The algorithm identified 5 patient clusters that varied by demographics, comorbidities, and pain scores. Each cluster was associated with predictable trends in PROMIS GH-P scores across the time points. Notably, patients who had the worst preoperative PROMIS GH-P scores (cluster 5) had the most improvement after TKA, whereas patients who had higher global health rating preoperatively had more modest improvement (clusters 1, 2, and 3). Two out of Five patient clusters (cluster 4 and 5) showed improvement in PROMIS GH-P scores that met a minimally clinically important difference at 1-year postoperative.

Conclusions

The unsupervised ML algorithm identified patient clusters that had predictable changes in PROMs after TKA. It is a positive step toward providing precision medical care for each of our arthroplasty patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
GXY发布了新的文献求助30
2秒前
Lucas应助专注秋尽采纳,获得10
2秒前
2秒前
754完成签到,获得积分10
2秒前
5秒前
学习猴发布了新的文献求助10
5秒前
充电宝应助炙热的如柏采纳,获得10
6秒前
所所应助qzaima采纳,获得10
6秒前
米兰达完成签到 ,获得积分0
7秒前
xg发布了新的文献求助10
9秒前
Loooong应助Ni采纳,获得10
10秒前
10秒前
WZ0904发布了新的文献求助10
10秒前
顾矜应助博ge采纳,获得10
12秒前
12秒前
Lotus发布了新的文献求助10
13秒前
14秒前
仁爱仙人掌完成签到,获得积分10
16秒前
ywang发布了新的文献求助10
16秒前
18秒前
18秒前
18秒前
ewqw关注了科研通微信公众号
19秒前
曦小蕊完成签到 ,获得积分10
19秒前
20秒前
21秒前
21秒前
奋斗灵波发布了新的文献求助10
21秒前
药学牛马发布了新的文献求助10
21秒前
21秒前
科研通AI5应助WZ0904采纳,获得10
22秒前
叶未晞yi发布了新的文献求助10
23秒前
ipeakkka发布了新的文献求助10
24秒前
Jzhang应助迷人的映雁采纳,获得10
24秒前
24秒前
zzz完成签到,获得积分10
25秒前
25秒前
小安发布了新的文献求助10
25秒前
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824