Using Unsupervised Machine Learning to Predict Quality of Life After Total Knee Arthroplasty

医学 患者报告的结果 物理疗法 人口统计学的 共病 生活质量(医疗保健) 关节置换术 骨科手术 体质指数 公制(单位) 全膝关节置换术 内科学 外科 人口学 经济 护理部 社会学 运营管理
作者
Jennifer Hunter,Farzan Soleymani,Herna L. Viktor,Wojtek Michalowski,Stéphane Poitras,Paul E. Beaulé
出处
期刊:Journal of Arthroplasty [Elsevier]
卷期号:39 (3): 677-682 被引量:4
标识
DOI:10.1016/j.arth.2023.09.027
摘要

Abstract

Background

Patient-reported outcome measures (PROMs) are an important metric to assess total knee arthroplasty (TKA) patients. The purpose of this study was to use a machine learning (ML) algorithm to identify patient features that impact PROMs after TKA.

Methods

Data from 636 TKA patients enrolled in our patient database between 2018 and 2022, were retrospectively reviewed. Their mean age was 68 years (range, 39 to 92), 56.7% women, and mean body mass index of 31.17 (range, 16 to 58). Patient demographics and the Functional Comorbidity Index were collected alongside Patient-Reported Outcome Measures Information System Global Health v1.2 (PROMIS GH-P) physical component scores preoperatively, at 3 months, and 1 year after TKA. An unsupervised ML algorithm (spectral clustering) was used to identify patient features impacting PROMIS GH-P scores at the various time points.

Results

The algorithm identified 5 patient clusters that varied by demographics, comorbidities, and pain scores. Each cluster was associated with predictable trends in PROMIS GH-P scores across the time points. Notably, patients who had the worst preoperative PROMIS GH-P scores (cluster 5) had the most improvement after TKA, whereas patients who had higher global health rating preoperatively had more modest improvement (clusters 1, 2, and 3). Two out of Five patient clusters (cluster 4 and 5) showed improvement in PROMIS GH-P scores that met a minimally clinically important difference at 1-year postoperative.

Conclusions

The unsupervised ML algorithm identified patient clusters that had predictable changes in PROMs after TKA. It is a positive step toward providing precision medical care for each of our arthroplasty patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SHANN2001发布了新的文献求助30
1秒前
2秒前
闪闪的梦山完成签到,获得积分10
2秒前
2秒前
优秀若剑发布了新的文献求助30
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
风趣绮烟发布了新的文献求助10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
丘比特应助相约在天边采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
非而者厚应助科研通管家采纳,获得10
4秒前
非而者厚应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
JamesPei应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
非而者厚应助科研通管家采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得50
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
非而者厚应助科研通管家采纳,获得10
6秒前
自信晓旋完成签到,获得积分10
6秒前
6秒前
非而者厚应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
wlscj应助科研通管家采纳,获得20
6秒前
6秒前
6秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342879
求助须知:如何正确求助?哪些是违规求助? 4478579
关于积分的说明 13940083
捐赠科研通 4375429
什么是DOI,文献DOI怎么找? 2404055
邀请新用户注册赠送积分活动 1396617
关于科研通互助平台的介绍 1368930