Association of serum individual and mixed aldehydes with depressive symptoms in the general population: A machine learning study

丁醛 逻辑回归 抑郁症状 人口 心理学 医学 精神科 内科学 化学 环境卫生 认知 生物化学 催化作用
作者
Ge Lin,Jin Liu,Xiao Kang,Weijing Wang,Dongfeng Zhang
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:345: 8-17
标识
DOI:10.1016/j.jad.2023.10.123
摘要

Humans have many opportunities to be exposed to aldehydes which have potential mechanisms for causing depression. We aimed to explore the relationships between serum individual and mixed aldehydes with depressive symptoms in general population. The data was extracted from the National Health and Nutrition Examination Survey 2013–2014. Depressive symptoms were assessed by Patient Health Questionnaire-9. Weighted binomial logistic regression and Bayesian kernel machine regression (BKMR) model were used to explore the association of six individual aldehyde and mixed aldehydes with depressive symptoms, respectively. Sex stratification analysis and sensitivity analysis were conducted. A total of 701 participants were included. We found a positive association between the highest (Q4) versus lowest quartile (Q1) of butyraldehyde with depressive symptoms (OR: 2.86, 95 % CI: 1.22–6.68), and a negative association between the Q3 versus Q1 of benzaldehyde (0.21, 0.07–0.60) and isopentanaldehyde (0.28, 0.08–0.90) with depressive symptoms in multivariate-adjusted model. The mixed aldehydes were positively associated with depressive symptoms using BKMR model, and butyraldehyde and heptanaldehyde were the dominant aldehydes. Several aldehydes, such as butyraldehyde and benzaldehyde, interacted with each other in their effects on depressive symptoms. The results of gender stratification analysis showed that butyraldehyde was the major contributor to the total effect of aldehydes on depressive symptoms in males, while heptanaldehyde was the dominant aldehyde in females. Causality cannot be inferred in this cross-sectional study. Our study indicated that mixed aldehydes can increase the risk of depressive symptoms, of which butyraldehyde and heptanaldehyde were the major contributing aldehydes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Tricia应助cherry采纳,获得10
1秒前
852应助粗暴的嫣娆采纳,获得10
1秒前
顾矜应助wwwww采纳,获得10
2秒前
斯文败类应助Severus采纳,获得10
3秒前
风趣的芒果完成签到,获得积分10
3秒前
3秒前
橙橙妈妈发布了新的文献求助10
3秒前
Yi关注了科研通微信公众号
4秒前
4秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
修远应助科研通管家采纳,获得50
5秒前
今后应助科研通管家采纳,获得10
5秒前
CipherSage应助科研通管家采纳,获得10
6秒前
韦广阔发布了新的文献求助10
6秒前
隐形曼青应助科研通管家采纳,获得30
6秒前
英姑应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
科研通AI6应助洛溪汐采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得20
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
852应助科研通管家采纳,获得20
6秒前
6秒前
李健应助科研通管家采纳,获得10
6秒前
我是老大应助科研通管家采纳,获得10
6秒前
6秒前
科目三应助Hecate采纳,获得10
8秒前
8秒前
lx发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
科目三应助蛋蛋采纳,获得10
8秒前
天天快乐应助橙橙妈妈采纳,获得10
10秒前
dailj发布了新的文献求助10
12秒前
辛勤的花瓣完成签到 ,获得积分10
12秒前
12秒前
123发布了新的文献求助10
12秒前
czy完成签到,获得积分20
13秒前
JamesPei应助JinChow采纳,获得10
14秒前
俏皮的松鼠完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Eurocode 7. Geotechnical design - General rules (BS EN 1997-1:2004+A1:2013) 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578592
求助须知:如何正确求助?哪些是违规求助? 4663424
关于积分的说明 14746436
捐赠科研通 4604210
什么是DOI,文献DOI怎么找? 2526893
邀请新用户注册赠送积分活动 1496464
关于科研通互助平台的介绍 1465788