Association of serum individual and mixed aldehydes with depressive symptoms in the general population: A machine learning study

丁醛 逻辑回归 抑郁症状 人口 心理学 医学 精神科 内科学 化学 环境卫生 认知 生物化学 催化作用
作者
Ge Lin,Jin Liu,Xiao Kang,Weijing Wang,Dongfeng Zhang
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:345: 8-17
标识
DOI:10.1016/j.jad.2023.10.123
摘要

Humans have many opportunities to be exposed to aldehydes which have potential mechanisms for causing depression. We aimed to explore the relationships between serum individual and mixed aldehydes with depressive symptoms in general population. The data was extracted from the National Health and Nutrition Examination Survey 2013–2014. Depressive symptoms were assessed by Patient Health Questionnaire-9. Weighted binomial logistic regression and Bayesian kernel machine regression (BKMR) model were used to explore the association of six individual aldehyde and mixed aldehydes with depressive symptoms, respectively. Sex stratification analysis and sensitivity analysis were conducted. A total of 701 participants were included. We found a positive association between the highest (Q4) versus lowest quartile (Q1) of butyraldehyde with depressive symptoms (OR: 2.86, 95 % CI: 1.22–6.68), and a negative association between the Q3 versus Q1 of benzaldehyde (0.21, 0.07–0.60) and isopentanaldehyde (0.28, 0.08–0.90) with depressive symptoms in multivariate-adjusted model. The mixed aldehydes were positively associated with depressive symptoms using BKMR model, and butyraldehyde and heptanaldehyde were the dominant aldehydes. Several aldehydes, such as butyraldehyde and benzaldehyde, interacted with each other in their effects on depressive symptoms. The results of gender stratification analysis showed that butyraldehyde was the major contributor to the total effect of aldehydes on depressive symptoms in males, while heptanaldehyde was the dominant aldehyde in females. Causality cannot be inferred in this cross-sectional study. Our study indicated that mixed aldehydes can increase the risk of depressive symptoms, of which butyraldehyde and heptanaldehyde were the major contributing aldehydes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助小易采纳,获得10
1秒前
lxt完成签到,获得积分10
3秒前
5秒前
5秒前
怜然关注了科研通微信公众号
7秒前
情怀应助李杰采纳,获得10
9秒前
所所应助天天开心采纳,获得10
9秒前
初一发布了新的文献求助10
9秒前
赘婿应助万松辉采纳,获得10
9秒前
10秒前
ysws完成签到,获得积分10
11秒前
Orange应助乐观的颦采纳,获得10
11秒前
完美世界应助June采纳,获得10
13秒前
14秒前
14秒前
闪闪完成签到,获得积分10
16秒前
16秒前
小马甲应助科研通管家采纳,获得10
16秒前
16秒前
所所应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得20
17秒前
17秒前
传奇3应助科研通管家采纳,获得10
17秒前
无花果应助科研通管家采纳,获得10
17秒前
科目三应助科研通管家采纳,获得10
17秒前
小二郎应助科研通管家采纳,获得10
17秒前
17秒前
爆米花应助科研通管家采纳,获得10
17秒前
斯文败类应助科研通管家采纳,获得10
17秒前
慎默应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
19秒前
冷酷夏真完成签到 ,获得积分10
21秒前
21秒前
悦耳沛槐完成签到,获得积分10
21秒前
万松辉发布了新的文献求助10
24秒前
legend完成签到,获得积分0
25秒前
怜然发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536873
求助须知:如何正确求助?哪些是违规求助? 4624540
关于积分的说明 14592255
捐赠科研通 4564957
什么是DOI,文献DOI怎么找? 2502101
邀请新用户注册赠送积分活动 1480843
关于科研通互助平台的介绍 1452073