Development of flexible grouting material for cement-stabilized macadam base using response surface and genetic algorithm optimization methodologies

响应面法 材料科学 抗弯强度 复合材料 抗压强度 收缩率 水泥 硅粉 Box-Behnken设计 粉煤灰 聚乙烯醇 化学 色谱法
作者
Haonan Lu,Qiao Dong,Shiao Yan,Xueqin Chen,Xiang Wang
出处
期刊:Construction and Building Materials [Elsevier BV]
卷期号:409: 133823-133823 被引量:8
标识
DOI:10.1016/j.conbuildmat.2023.133823
摘要

To repair the voids and cracks in the Cement-stabilized macadam base (CSMB), a grouting material with lower elastic modulus, enhanced fluidity and slight expansion called Flexible Grouting Material (FGM) was developed using superfine cement, fly ash (FA), silica fume (SF), vinyl acetate-ethylene (VAE) copolymer emulsion, and polyvinyl alcohol (PVA) fiber. After that, the study optimized the proportion of FGM using Response Surface Methodology (RSM) and Non-dominated Sorting Genetic Algorithm-II (NSGA-II) in Multi-Objective Optimization (MOO). Firstly, to determine the component contents for subsequent experiments, the fluidity, setting time, compressive/flexural strength (1d + 3d), and ratio of compressive strength to flexural strength (C/F, 1d + 3d) were tested. Subsequently, the Response Surface Methodology-Box Behnken Design (RSM-BBD) was employed using VAE content, PVA content, and water-to-cement ratio (W/C) as factors. Additionally, the fluidity, setting time, compressive/flexural strength and C/F (28d), elastic modulus (28d), and drying shrinkage (28d) were considered as responses in RSM-BBD. The VAE content and W/C significantly influenced the response values, while the PVA content had a relatively minor influence. Finally, the NSGA-II was utilized to determine the optimal proportion of FGM. Compared to the control group, the optimal FGM demonstrated 16.53 % increase in fluidity, 37.86 % decrease in elastic modulus (28d), 47.98 % decrease in C/F (28d), 22.22 % reduction in drying shrinkage (28d), and 54.07 % increase in final setting time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
wayhome发布了新的文献求助10
1秒前
28316818@qq.com完成签到,获得积分20
2秒前
小黄完成签到,获得积分10
3秒前
老迟到的可兰完成签到 ,获得积分10
3秒前
柴脱完成签到,获得积分10
3秒前
Dudidu发布了新的文献求助10
4秒前
6秒前
脑洞疼应助yolo采纳,获得10
7秒前
Ann完成签到,获得积分10
9秒前
王十灵完成签到,获得积分10
10秒前
传奇3应助瞬间de回眸采纳,获得10
11秒前
xiaoruan发布了新的文献求助10
15秒前
无名完成签到,获得积分10
15秒前
小黄发布了新的文献求助10
15秒前
鱼祁完成签到,获得积分20
15秒前
16秒前
今后应助高兴元绿采纳,获得10
16秒前
17秒前
17秒前
18秒前
18秒前
111发布了新的文献求助10
19秒前
鱼祁发布了新的文献求助10
19秒前
yolo发布了新的文献求助10
20秒前
刘雨婷发布了新的文献求助10
21秒前
嘉嘉琦发布了新的文献求助10
23秒前
Cat应助ch采纳,获得10
24秒前
lyy1106发布了新的文献求助10
24秒前
tangtang完成签到 ,获得积分10
24秒前
29秒前
32秒前
33秒前
33秒前
chn丶楠发布了新的文献求助10
35秒前
努力的学发布了新的文献求助10
37秒前
lljken发布了新的文献求助10
37秒前
41秒前
边际完成签到,获得积分10
42秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738241
求助须知:如何正确求助?哪些是违规求助? 3281686
关于积分的说明 10026416
捐赠科研通 2998617
什么是DOI,文献DOI怎么找? 1645277
邀请新用户注册赠送积分活动 782740
科研通“疑难数据库(出版商)”最低求助积分说明 749891