清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An intuitionistic fuzzy grey-Markov method with application to demand forecasting for emergency supplies during major epidemics

计算机科学 需求预测 运筹学 模糊逻辑 模糊集 马尔可夫链 集合(抽象数据类型) 数据挖掘 人工智能 机器学习 数学 程序设计语言
作者
Zhiying Wang,Hongmei Jia
出处
期刊:Grey systems [Emerald (MCB UP)]
卷期号:14 (1): 185-208 被引量:1
标识
DOI:10.1108/gs-07-2023-0062
摘要

Purpose Forecasting demand of emergency supplies under major epidemics plays a vital role in improving rescue efficiency. Few studies have combined intuitionistic fuzzy set with grey-Markov method and applied it to the prediction of emergency supplies demand. Therefore, this article aims to establish a novel method for emergency supplies demand forecasting under major epidemics. Design/methodology/approach Emergency supplies demand is correlated with the number of infected cases in need of relief services. First, a novel method called the Intuitionistic Fuzzy TPGM(1,1)-Markov Method (IFTPGMM) is proposed, and it is utilized for the purpose of forecasting the number of people. Then, the prediction of demand for emergency supplies is calculated using a method based on the safety inventory theory, according to numbers predicted by IFTPGMM. Finally, to demonstrate the effectiveness of the proposed method, a comparative analysis is conducted between IFTPGMM and four other methods. Findings The results show that IFTPGMM demonstrates superior predictive performance compared to four other methods. The integration of the grey method and intuitionistic fuzzy set has been shown to effectively handle uncertain information and enhance the accuracy of predictions. Originality/value The main contribution of this article is to propose a novel method for emergency supplies demand forecasting under major epidemics. The benefits of utilizing the grey method for handling small sample sizes and intuitionistic fuzzy set for handling uncertain information are considered in this proposed method. This method not only enhances existing grey method but also expands the methodologies used for forecasting demand for emergency supplies. Highlights (for review) An intuitionistic fuzzy TPGM(1,1)-Markov method (IFTPGMM) is proposed. The safety inventory theory is combined with IFTPGMM to construct a prediction method. Asymptomatic infected cases are taken to forecast the demand for emergency supplies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助无情的琳采纳,获得10
2秒前
13秒前
爆米花应助有梦想的咸鱼采纳,获得10
26秒前
zhangl完成签到,获得积分10
27秒前
华仔应助科研通管家采纳,获得100
31秒前
Orange应助凉宫八月采纳,获得10
32秒前
35秒前
40秒前
luo发布了新的文献求助10
41秒前
无情的琳发布了新的文献求助10
43秒前
43秒前
华仔应助w_采纳,获得10
46秒前
凉宫八月发布了新的文献求助10
47秒前
1分钟前
1分钟前
1分钟前
脑洞疼应助luo采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
maitiandehe完成签到,获得积分10
2分钟前
含糊的尔槐完成签到,获得积分10
2分钟前
归尘发布了新的文献求助30
2分钟前
彭晓雅完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
科目三应助凉宫八月采纳,获得10
2分钟前
红火完成签到 ,获得积分10
2分钟前
大模型应助无情的琳采纳,获得10
3分钟前
3分钟前
3分钟前
luo发布了新的文献求助10
3分钟前
3分钟前
3分钟前
w_发布了新的文献求助10
3分钟前
3分钟前
3分钟前
凉宫八月发布了新的文献求助10
3分钟前
szcyxzh完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5724137
求助须知:如何正确求助?哪些是违规求助? 5285050
关于积分的说明 15299615
捐赠科研通 4872220
什么是DOI,文献DOI怎么找? 2616750
邀请新用户注册赠送积分活动 1566605
关于科研通互助平台的介绍 1523490